LECTURE NOTES

ON

THERMODYNAMICS
ACADEMIC YEAR 2021-22

I B.Tech.-II SEMESTER(R20)

OUKU PAVAN KUMAR ,Assistant Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

V S M COLLEGE OF ENGINEERING RAMCHANDRAPURAM
E.G DISTRICT
533255

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
 KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

I Year - II Semester		\mathbf{L}	\mathbf{T}	\mathbf{P}	C
		$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

THERMODYNAMICS

Course Objectives:

To impart the knowledge of the thermodynamic laws and principles so as to enable the student to prepare an energy audit of any mechanical system that exchange heat and work with the surroundings.

UNIT - I

Introduction: Basic Concepts : System, boundary, Surrounding, Universe, control volume, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process - Reversible, Quasi static \& Irreversible Processes, cycle, Causes of Irreversibility. Energy in State and in Transition - Types, Work and Heat, Point and Path function.
Zeroth Law of Thermodynamics - Concept of Temperature - Principles of Thermometry Reference Points - Const. Volume gas Thermometer - Scales of Temperature.

UNIT - II

Joule's Experiments - First law of Thermodynamics - Corollaries - First law applied to a Process - applied to a flow system -Energy balance for closed systems-Specific heatsInternal energy, Enthalpy and Specific heats of Solids, liquids and Ideal gases, Some steady flow energy equation applied to Nozzle, Turbine, Compressor and heat exchanger devices, PMM-I.

UNIT III

Limitations of the First Law - Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence, Corollaries, PMM of Second kind, Carnot cycle and its specialties, Carnot's theorem, Thermodynamic scale of Temperature.
Clausius Inequality, Entropy, Principle of Entropy Increase, Availability and Irreversibility (Basic definitions) - Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations - Elementary Treatment of the Third Law of Thermodynamics.

UNIT IV

Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations - Triple point and critical point, properties during change of phase, Dryness Fraction - Clausius - Clapeyron Equation, Property tables. Various Thermodynamic processes and energy Transfer - Steam Calorimetry.

UNIT - V

Ideal Gas equation of state- Compressibility factor- Van der Waals equation of state- BeattieBridgeman equation of state- Benedict-Webb-Rubin equation of state- Viral equation of statecompressibility charts - variable specific heats .
Mixtures of perfect Gases - Dalton's Law of partial pressure, Avogadro's Laws of additive volumes- Equivalent Gas constant and Molecular Internal Energy, Enthalpy, Specific Heat and Entropy of Mixture of Perfect Gases and Vapour.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
 KAKINADA - 533 003, Andhra Pradesh, India

 DEPARTMENT OF MECHANICAL ENGINEERING

 DEPARTMENT OF MECHANICAL ENGINEERING}

Psychrometric Properties - Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, Saturated Air, Vapour pressure, Degree of saturation - Adiabatic Saturation , Carrier's Equation - Psychrometric chart.

TEXT BOOKS:

1. Engineering Thermodynamics, PK Nag $6{ }^{\text {th }}$ Edn , McGraw Hill.
2. Fundamentals of Thermodynamics - Sonntag, Borgnakke, Van Wylen, $6^{\text {th }}$ Edn, Wiley

REFERENCES:

1. Thermodynamics by Prasanna Kumar, Pearson Publishers
2. Engineering Thermodynamics - Jones \& Dugan PHI
3. Thermodynamics, an Engineering Approach, Yunus A Cenegel, Michael A Boles, $8^{\text {th }}$ Edn inSI Units, McGraw Hill.
4. Thermodynamics - J.P.Holman , McGrawHill
5. An Introduction to Thermodynamics - Y.V.C.Rao - Universities press.
6. Thermodynamics - W.Z.Black \& J.G.Hartley, $3^{\text {rd }}$ Edn Pearson Publ.
7. Engineering Thermodynamics - D.P.Misra, Cengage Publ.
8. Engineering Thermodynamics - P.Chattopadhyay - Oxford Higher Edn Publ.

COURSE OUTCOMES:

After undergoing the course the student is expected to learn
CO1: Basic concepts of thermodynamics
CO2: Laws of thermodynamics
CO3: Concept of entropy
CO4: Property evaluation of vapors and their depiction in tables and charts
CO5: Evaluation of properties of perfect gas mixtures.

VSM COLLEGE OF ENGINEERING
 RAMACHANDRAPRUM-533255
 DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title	Year-Sem	Branch	Contact Periods/Week	Sections
THERMODYNAMICS	$2-1$	Mechanical engineering	6	-

COURSE OUTCOMES: Students are able to

1. To impart the knowledge of the thermodynamic laws and principles so as to enable the student to prepare an energy audit of any mechanical system that exchange heat and work with the surroundings..(K1)
2. Understand the concept of first law of thermodynamics K2)
3. Analyze the problems on second law of thermodynamics. (K4)
4. Determine the parameters of heat engine and refrigerators.(K3)
5. Estimate work and heat transfer parameters.(K2)

$\begin{aligned} & \hline \text { Unit/ } \\ & \text { item } \\ & \text { No. } \end{aligned}$	Outcomes		$\begin{gathered} \text { Topi } \\ \mathbf{c} \end{gathered}$	Number of periods	Total periods	Book Refer ence	Delive ry Metho d
1	CO1: Identify the unique vocabulary associated with thermodynamics and Explain the basic concepts thermodynamics like system, properties, equilibrium, pressure, specific volume, temperature, zeroth law of thermodynamics, temperature measurement and temperature scales.	Title of the Chapter : Fundamental Concepts \& Definitions			15	$\begin{aligned} & \mathrm{T} 1, \\ & \mathrm{R} 1 \end{aligned}$	\quad Chalk$\&$ Talk,PPT,\quad ActiveLearning$\&$Tutorial
		1.1	Explain the basic concepts of thermodynamics such as system, state, state postulate, equilibrium, properties, process and cycle	4			
		1.2	Distinguish between Open, Closed and Isolated systems, Microscopic and Macroscopic approaches, Intensive and Extensive properties	4			
		1.3	$\begin{array}{lccr}\text { Define } & \text { zeroth } & \text { law } & \text { of } \\ \text { thermodynamics } & \text { and } & \text { explain } & \text { the }\end{array}$ concept of pressure, temperature, specific volume and temperature scales.	4			
		1.4	Apply the above concepts to solve simple engineering problems				
2	CO2: Explain the concept of thermodynamic work. Calculate and compare work in case of a closed system executing different thermodynamic processes or different thermodynamic cycles, State and apply the first law of thermodynamics		Title of the Chapter : Work and Heat, First Law of thermodynamics for closed systems		15		 Talk, Active Learning Tutorial
		2.1	Derive an expression for thermodynamic work at the moving boundary of a simple compressible system	4			
		2.2	Calculate and compare work in case of a system executing a thermodynamic cycle with different combinations of	4			

LIST OF TEXT BOOKS AND AUTHORS

Text Books:

T1. Engineering Thermodynamics, PK Nag 6th Edn , McGraw Hill.
T2. Fundamentals of Thermodynamics - Sonntag, Borgnakke, Van Wylen, 6th Edn, Wiley

Reference Books:

R1. Thermodynamics -RK rajput
R2. Engineering Thermodynamics - Jones \& Dugan PHI.
R3. Thermodynamics, an Engineering Approach, Yunus A Cenegel, Michael A Boles, 8th Edn inSI Units, McGraw Hill.
R4. Thermodynamics - J.P.Holman , McGrawHill
R5. An Introduction to Thermodynamics - Y.V.C.Rao - Universities press.

UNIT-1

Introduction:- Thermodynamics is the science of energy trampler and its effect on the physical profaties of substances.
at is a classical (or) macroscopic science, which studies heat and w $\$ k$ transfer with matter which bring about changes in the macroscopic properties of a substance that one measurable.
Bored of ip an observatias of common experience, changes in the properties of substance have been formulated into 4 Thermodynamic
lats. These laws goners the principle of energy conversion.
The application of the thermodynamic laws and perinclples are found in all ficleds of energy technology.

Four hals
(1) steam and Nuclear power plants (1) First laws coneptof Internal nagy
2) I. C.engires
3) Gas turbines
4) Refrigeration \& Air-conditioning
(2) Zeroth Laws: Conceptor
5) Compressor etc.,

Terms (as) definition:-
Example:- steam and Nuclear power plants (1) First
(2) Zerdt Lavs: cancyptos Tenpenh
(3) second law r- Limit of converting heat rm to wink
(4) Third Lavs:- Absdutezenob Entropy

1) Thermodynamic system:- ot is a prescribed region (as space on finite quantity of matter on which we fours our attention to study its properties.
2) Surroundings:- ether than the system everything else is known es surroundings.
3) Boundary:- An imaginary closed woke which separates system Comity surroundings is called Boundary. The bound arr gray be either fixed (or craving.

4) Universe:-

SURROUNDINGS.
system plus surroundings pit together is known an uniluge. Hence it hos no boundaries and is of infinite size.
Types of Theimpdinanic: across the boundary, The serpens are divided in to there types:

Dclosed system
2) open system
3)Tsolated system.
(1) closed system:- ion a closed systems, the rios is fixed. There is no mass transfer acres the boundaries but energy transfer may takes place in to (or) out of the system.

No mass transfer.

certain quantity of fluid in ia cylinder bounded by a piston constitues a eloped system.
(2) open system:- on an open system both moss and energy crosses the boundary.

Ex:- D compressor
2) Nasals.

(3) Isolated system:- on isdated system, there is neither energy transfer n\& mots transfer occurs acres the boundaries. Fe., Not having any interaction with surroundings.
ExT
D Thermos flask
2) Insulated chamber

Type of thermodymmic system

1) closed
moss Transfer
2) open
3) Isolated

Energy Transfer
x
\sim
x

Andtier Types of systems:-
(1) Homogeneous system:- A quantity of matter unifions throughat in chemical composition and physical structure is called a phage. Every substance can exist in any of the three phases ie., solid, liquid and gas. A systems consisting of a single phage is called a Homogenears system.
(2) Heterogeneous system:- A system consisting of mile than one phage is known as Heterogeneous system.
control volume for thermodynamic analysis of an open system such as an air compressor, attention is focussed on a certain. volume in space surrounding the compressor. Known as. The control volume bounded by a surface called control surface.

Thermodynamic properties, processes and A cycles:-
properties:- Every system hos certain charactengtics by which its physical condition may be described. EX: volume, temperature, pressure such characteristics are called properties of the system.
state- state is a unique condition of system described at any instant of time described by its propaties such as pressure, temperative, volume etci,
Change of state:- Any operation in lohich one or mole of the properties of a stem changes is called a change of state.
path- When a system undergoes change in its state, the line joining He series of intermediate states through which the system has passed is known as path.
process:- when a the patti s completely specified, the change of state is called a process. Ex: Isobaric prows (pressures $=\cos 5$.)

Thermodynamic cycle Conic process:-
If a system undergoes a series of processes fin one state to aniler state and returns to its initial state by forming a complete cycle, then the system is said to be undege a cyclic process. A cyclic prows may have 260 moke Han two processes.

Types of properties:-
1). Intensive properties:- Intensive properties of are those which are independent of the mass of: the system.

Ex:- pressure, temperature, density
2) Extensive properties:- Extensive propaties are those which are dependant on the mass of the system.

If the mass is increased, the values of Intensive propectes are not changed. But the values of extensive properties abs increases. Ex:- Total moss, Total volume, Total energy.

The extensive properties per unit mass, are intensive properties.
Te., volume \rightarrow Extensive property
Specific volume \rightarrow Intensive property.
All specific extensive properties are intensive properties.
Ex- specific volume, specific heat, Specific Deraty.
MACROSCOPIC and MICROSCOPIC POINT OF VIEW:
Thermodynamic stridies are undertaken by the following two 'different approaches.

1. Macroscopic approach.
2. In Thy approach: a certain: quantity of matter is cortidesied without taking into account the events occurring at molecular level. In otter-wards, the approach to Thermodynamics is Concorred with overall behaviour. This is knar as classical Thermody nannies.
3. The analysis of macroscopic system requires, simple mattematied formula.?

The approach considers that The system is made up of al large no. of descrecte particles Kuphnias molecules. These andecules have different velocities and energies. The value of These enogies are. Constantly changing with time. This approach to thermodynamics Which b concerned directly with the stricture of matter \& known statistical.Thermodymmics.
The behaviour of the seitan is found by vying statistic methods is the mo. of mbeculss A very large. Ss advanced statisficd mathematical methods ceded to explain charges in the system:
(3). The value of the propaties of the systien are their average values. For exlample cansider a sample of gas in a closed contalnew, the pressine of the gas is the averaxe value of the phasive excited by millians of individual modecules. The properties can be meagured vay earily. The chainge in properties can be belt by sur senges:
4). In order to describe a system, only fers properties are criedied

The propenties like, vatocity, momenturn, impulge etc, which degeribes the moleale con not be equily magued by ingtuuments. our gensey can not feal them.

Large no-of Vaviables are neeided to dereribe a system, so the opprachs' complitad.

Therimodynamic equilubrium:-
A system will be in a state of thesmodynamic eunibisilum, its the conditions for the following three types of equibiortiosis are satioffied.
a). Mechanical Equiliontum b) chomical Equilithonis of The mind mechanical oquilibrium:- of all the forces an thel systert and between the system and surpoundings are balanced, then the systom is sald to be in mechainical equilubraum. Thisis. possible only when pregsure is same throughout the sjgiem : and afso equil to thiat of :"Surjomplengs.
Chemical. Equilipritim:- of no chernical rexaction Qutranter Of matter takes place thriongtiont the isystemi, Iten the system is said to be in chemical exilifiorium.
Theirnal Equilibrtium: - of the teripenative, is unfferm Threighiont , The systom and betreeen the systemi mid. Surroundirgs, then the system is said to be in theimal Equilibrition.
ciniteria for an Equulionlum.
Equilubrium

- Thermal mechanical
chomical
Thermodynumic
Eriteria
Equelebrium of Tompentare
Equilitorion of plassure and frees Equitibrian of chemical potentias All the abovie.
concept of continuo:-
To study about a system and its properties, it is always convient to consider the systerv as a continuous distribution of matter. This continues es distribution of matter is knam as continuim: The concept of continue is to treat The matter as continuous by disregarding the bchavian of individual molecules. on classical thermodynamics, The concept of continuum is very reseffel.

Let us consider the mass Δm in a volume ΔV sourranded the point P as shown in figure.

of the system with in the volume ΔV. The volume ΔV^{\prime} is the smallest volume about the point P, for which the mads can be considered continues. Any volume indene than this volume will lead to discontinuity in the particle, atoms and electrons in the matter and the darsits becomes curbredictable.

$$
P \text { density }=\operatorname{limit}_{\Delta V \rightarrow \Delta V^{\prime}}\left(\frac{\Delta m}{\Delta V}\right)_{-1} .
$$

Thus, continue holds good blow volume ΔV^{\prime} and is non Continuo for a volume less than ΔV^{\prime}. This is due to the variation in the density of fluid from one point, to another point with entering and leaving the molecules flan the system in rachionn manner.
Quasi-static process
When a process, proceeds in such a manner that the

- system remains infinitesimally close to an equilibrium states at all times, it is called a quasi-static on quasi- equilibrians process. A quasi-state - process is viewed as a sufficiently slow process in which system changes. ito state vary slowely under the influence of ain infinitesimally small driving force. The system adjusts itself internally, so that The properties in one port of the system donot change any forster than those in the other part.

Let us consider a system of gas contained in a cylinder．The system is initially in equilibrium state，represented by properties $p,, 1, T_{1}$ ．

 exerted by the gas．
of the weight（W）is prater ，解 proton will move
up due to gas pressure．The systernuman to an equilibrium state by properties $p_{2}, v_{2}, T_{2}, \cdots$ ．But the intermediate．－states passed through by the system are． non－equilibrilum states．Which can be described by points 1×2.

Now，if single weight W is made up of goal pieces of weights and these weights are removed one by ore very slowely from top of piston， the gas will pass through ageries of equiluriam stater． of the \because＇i．．．mass are made negligibly small． the gas would undergo a Quagi－equilibrium expansion press．
classification of Thermodynamic processes：－
1．Non－bow processes． 2 plows processes．
1．Non－blow processes：－The procosses occur in closed system which donot：＇po mit the transfer of mass across their boundaries，are known as non－blow processes．Energy－ crises the system boundary in the form of teat $\& 2$ work． ex：－constant volume process，content pressure process etc．
Q．plow processes：－The processes occuring in open system which permit the transfer of mass to and blow．the system are known as blois processes．
Ex：－steady fin r processes through nozzles，turbines x compresses s ate． mon－steady flows processes are filling（or）evacuation of vessels．
WORK：－work is transient quantity which only appears at the boundary while a change of state is taking place with in α system．units are Joules（J）．
$\underbrace{\text { work in }}_{\text {surrounding }}$

Signal convention:-
When work is done by the system, the sign is the .
When wii is dore on the system, the sign is -xe.
PdV work (crore pindurdoplacement work:-
constition processed in pros ut a blictionlonationder arrangement. 1 Let the gas pressing is P, volume v and piston cross-sectional area is A. If the piston is towed to move through a distance ' $d x$ ' in a quiagi-equilibricum manner, the force applied on the pistons $F=$ pressure x cross-seational area of piston $=P A$.
Then work transfer through the distance of $d x$; during the process, $\delta W=p A d x=p d V$.
Total work transfer during a procos is equal to area und pip

$$
\therefore W=\cdot \int_{1}^{2} p d v \quad k J
$$

Non plow r work in various quagi-static processes.
i). Constant pressure process $(P=c)$ cor $p r^{\circ}=c$.
(isochoric process)

$$
w_{1-2}=\int_{1}^{2} p d v=p\left[v_{2}-v_{1}\right] .
$$

2) Constant volume process (an Isocholic process $(v=c) ; \ddot{P V^{*}}=c$

$$
\begin{aligned}
& W_{1-2}=\int_{1}^{2} p d v=0\left[\left.\begin{array}{l}
\text { since } \\
d v=\operatorname{costant} \\
d v=0
\end{array} \quad p_{1}^{p=p_{1}}\right|_{2} ^{1}\right. \\
& \text { instant temperate process cove } \rightarrow v
\end{aligned}
$$

3) Constant temperate process

Isothermal process $\sigma=c \cos p r^{\prime} \geq c$

$$
\begin{aligned}
P v= & p_{1} v_{1}=p_{2} v_{2}=c \\
w & =\int_{1}^{2} p d v=\int_{1}^{2} \frac{c}{v} d v=c \int_{1}^{2} \frac{1}{v} \cdot d v \\
& =c \ln v]_{1}^{2}=c \ln \frac{v_{2}}{v_{1}} \\
\therefore \quad & w=p_{1} v_{1} \ln \frac{v_{2}}{v_{1}}=\frac{p_{1}}{p_{2}}
\end{aligned}
$$

Adiabatic process $P^{r}=\dot{c}$.

$$
\begin{aligned}
& w=\int_{1}^{2} p d v \\
& =\int_{1}^{2} \frac{c}{v^{r}} d v=c\left[\frac{v^{-r+1}}{-r+1}\right]_{1}^{2} \\
& =\frac{c v_{2}^{-r+1}-c v_{1}^{-r+1}}{-r+1}=\frac{p_{2} v_{2}^{\gamma} \cdot v_{2}^{-r+1}-p_{1} v_{1}^{\gamma} v_{1}^{-\gamma+1}}{-r+1} \\
& \therefore W=\frac{P_{2} v_{2}+p_{1} v_{1}}{-r+1} \text { (r) } \quad \frac{p_{1} v_{1}-p_{2} v_{2}}{r-1} \\
& =\frac{{ }_{1}{ }^{c} v_{2}-C{v_{1}}^{-r}}{-r+1}=\frac{p_{2} v_{2}^{\gamma} \cdot v_{2}-p_{1} v_{1}^{\gamma} v_{1}^{-\gamma}+1}{-r+1} \\
& \therefore W=\frac{P_{2} V_{2}+P_{1} V_{1}}{-r+1} \\
& P_{1} v_{1}^{r}=P_{2} v_{2}^{r}=c \\
& c\left[\frac{v^{-\gamma+1}}{-\gamma+1}\right]_{1}^{2} \\
& \text { (a) }=\frac{p_{1} v_{1}-p_{2} v_{2}}{r-1}
\end{aligned}
$$

Polytrofic process $\mathrm{Pv}^{n_{2}}=c$ $p_{1} v_{1} n_{2} k_{2} v_{2}^{n}=c$
$W=\int_{1}^{2} p d v$, By solving.
$W=\frac{p_{1} v_{1}-P_{2} v_{2}}{\eta-1}$.
A Gas in a cered system can under go the following process.

\Rightarrow constant volume $v=c{ }^{2} v^{*}=c \quad v_{1}=v_{2}=v_{3}$. " $w_{1-2}=0$
3) Constant tempentive $T=c \cos \quad v^{\prime}=c \quad p_{1} v_{1}=p_{2} v_{2}=" w_{1-2}=p_{1} v_{1} v_{1} v_{2}$
4) Adiabatic
$\phi v^{2}=c$
5) polytropic
$P v^{n}=c$
$P_{1} v_{1}^{\top}=P_{2} v_{2}^{\gamma} " W_{12}=\frac{P_{1} v_{1}-P_{1} v_{2}}{r-1}$
$p_{1} v_{1}^{n}=1, k_{2} v_{2}^{n} \quad " M_{1-2}=\frac{P_{1} v_{1}-P_{2} v_{2}}{p_{1}}$
Heat:- Heat is something which appears at the boundary then: Prifem change its stacte due to a difference in tompertive between the system and its surorandings. Symbols a.

Sign convention

\rightarrow when heat flows in to the system, Q is the When heat blows blow (oil out of system, ais -hue

PROBLEMS

(1) If a gas of volume. $6000 \mathrm{~cm}^{3}$ and at a. pressie of 100 kPa . is compressed quagistatically. to $P V^{*}=c$ until the volume becomes $2000 \mathrm{~cm}^{3}$. Calculate the final progguve and wosktranfen. Given data:-

$$
\begin{aligned}
& P_{1}=100 \mathrm{kPa}=1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& v_{1}=6000 \mathrm{~cm}^{3}=0.006 \mathrm{~m}^{3} \\
& v_{2}=2000 \mathrm{~cm}^{3}=2000 \times 10^{-6}=0.002 \mathrm{~m}^{3} .
\end{aligned}
$$

Find pressure (172)
we know that on polytrapic process, $p v^{2}=c=p_{1} v_{1}^{2}=p_{2} v_{2}^{2}$.

$$
\therefore p_{2}=p_{1}\left(\frac{y_{1}}{\sqrt{2}}\right)^{2}=1\left(\frac{0.006}{0.002}\right)^{2}=9 \text { bar. }
$$

wink done $(W,-2)$: polydrotic compression
workdore, $w=1.2 \mathrm{~kJ}$ Ans.
(2) A mass of 2.5 kg of air is compressed in a quagi-static process blow 0.1 mPa to 0.7 MPa for which $\mathrm{PV}=$ constant. The initial volume is $0.8 \mathrm{~m}^{3} / \mathrm{kg}$. Find the wosedone by the piston to compress the air.
Sol:- mass, $m=2.5 \mathrm{kgs}$.

$$
\begin{aligned}
& p_{1}=0.1 \mathrm{MPa} \\
& p_{2}=0.7 \mathrm{MPa}
\end{aligned}
$$

process, $P V=C, V_{S_{1}}=0.8 \mathrm{~m}^{3} / \mathrm{s}$.
we know that workdore in $P r=c$ process,

sine $v_{1}=$ secificud romes

$$
=0.8 \times 20
$$

$$
=2 \mathrm{~m}^{3} \text {. }
$$

$$
W=-389.182 \mathrm{~kJ}
$$

(3) An engine oglunder has piston -of area $0.12 \mathrm{ar}^{2}$ and contains gas at a pressure of 1.5 MPa . The gas expands according to a process which is repragented by a straight line on a $p-v$ diagram. The final pressure is 0.15 MPa . Calculate the W-D by the gas on the piston if the strobe is 0.3 m
Sd:- Given, plea $=0.12 \mathrm{an}^{2}$
Initial os pressers $p_{1}=1.5 \mathrm{MPa}$
Final gas pressure, $P_{2}=0.15 \mathrm{MPa}$
longtit of stroke; ${ }^{\prime} L^{\prime}=0.3$ metres.

$$
\begin{aligned}
\text { Ne; } L & =0.3 \text { metres } \\
\text { stroke volume, }\left(V_{2}-V_{1}\right) & =\text { Area of piston } \\
& =\text { orr gitinder } \\
& =10 \times 2=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { lea of piston } \times \text { stroke Length } \\
& \text { cor cinder } \times 3 \mathrm{~cm}^{3} \text {. }
\end{aligned}
$$

$$
=0.12 \times 0.3=0.036 \mathrm{~cm}^{3} \text {. }
$$

\therefore Woukdore on the piston is and $=0.12 \times 0.3=0.0$ shaded Ale in pudiagram.

$$
\begin{aligned}
W & =\frac{1}{2}\left(p_{1}-P_{2}\right)\left(V_{2} V_{1}\right)+P_{2}\left(V_{2} V_{1}\right) \\
& =\frac{1}{2}(1.5 .0 .15) \times 10^{6}(0.036)+0.15 \times 10^{6}, \\
W & =0.0297 \times 10^{6} \text { Joules. } \quad .29 .7 \mathrm{~kJ},
\end{aligned}
$$

$$
\begin{aligned}
& \text { we known that } W=\int_{v_{1}}^{v_{2}} P d v=\frac{\left(P_{2} k_{2}-P_{1} v_{1}\right)}{n-1} \text { fa polyirpic } \\
& =\frac{(9 \times 0.000-1 \times 0.006)}{2-1} \times 100 \mathrm{~kJ} \text {. }
\end{aligned}
$$

[1PBE A gas sinderiges a reversible non-blows process according to the relation $P=(-3 V+15)$ where v is the volume in m^{3} and p it he progun in bar. Determine the workdone when the volume change from 3 to $6 \mathrm{sh}^{3}$.
sse. pressure, $P=(-3 v+15)$
mitial volume, $V_{1}=3 \mathrm{~m}^{3}$
Final volume, $v_{2}=6 \mathrm{~m}^{3} \cdot 2$
we know, woikdore $=\int_{1}^{2} p d v=\int_{1}^{2}(-3 v+15) d v$

$$
\begin{aligned}
& \left.=-3 \cdot \frac{v^{2}}{2}+15\right]_{3}^{6}=-1.5\left(6^{2}-3^{2}\right)+15(6-3) \\
& =-40.5+45=4.5 \times 10^{5} \text { Joules. }\left[\because \text { 中 in bar } 10^{5}\right] \\
W & =450 \times J
\end{aligned}
$$

A gas expands accisding to the equation $P V=100$, whore p is the presgave in: KPa and V is the specific volume in m^{3} / kg. The initial pressure of gasis 1000 kPa and final 1 she is 500 kPa . The gas is Then heated at constant volume back to its original pressure of 1000 kPa . Determine the urine of combined process. Also sketch the process on PV co-oldinates.
SN $p v=100$
initial pressure, $P_{1}=1000 \mathrm{kN} / \mathrm{ms}^{2}$
At state, 2 progine, $P_{2}=500 \mathrm{kN} / \mathrm{mN}^{2}$
At State, Final pressure, $p_{3}=p_{1}=1000 \mathrm{kNfine}$. FPa

wotkdore during $1=2$-process
we know, $P V=100=i_{1} v_{1}=t_{2} v_{2}$ (Constant tempentare $T_{2} e$ procter)

$$
\begin{aligned}
& v_{1}=\frac{100}{1000}=0.1 \mathrm{~m}^{3} / \mathrm{kg} \quad v_{2}=\frac{100}{500}=0.2 \mathrm{r}^{3} / \mathrm{kg} . \\
& W_{1-2}=p_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=1000 \times 1.0 .1 \times \ln \frac{0.2}{0.1}=69.315 . \mathrm{kJ} / \mathrm{kg} \\
& \text { wirkdore during } 2-3 \text { process (castanet volume process } V=c \text {). }
\end{aligned}
$$

$W_{2-3}=0$, since $2-3$ process line is vertical.

PROA

$$
\therefore W_{1-3}=W_{1-2}+W_{2-3}=69.315 \mathrm{~kJ} \mid \mathrm{kg}
$$

A gas undergoes two procapses that were in series. the first process is an expanilon process that is canviedont according to The law $p r=c$ and the second process is a constant teregsun process, that returns to the gas to the initial volume of the first process. The start of firs er process is at 400 kPa and $0.025 \mathrm{an}^{3}$ witt an expansion to 200 KPa . Sketch the process. P-V diagram and determine Th work of the combined process.
502.

$$
\begin{aligned}
& p V=c \\
& p_{1}=400 \mathrm{kPa} \\
& V_{1}=0.025 \mathrm{~m}^{3} \\
& p_{2}=200 \mathrm{kPa}
\end{aligned}
$$

$$
\therefore V_{2}=\frac{p_{1}}{p_{2}} \times V_{1}=\frac{9700}{200} \times 0.025=0.05 \mathrm{~m}^{3}
$$

woikdone during ssithernd process, $T=C$ (on) $P V=C(1-3)$ ices

$$
\begin{aligned}
& W_{1-2}=p_{1} V_{1} \ln \frac{P_{1}}{P_{2}}=400 \times 0.025 \ln \frac{400}{200}=6.93 \mathrm{~kJ} . \\
& W_{2}-3=p_{2}\left(V_{3}-V_{2}\right)=200(0.025-0.05)=-5 \mathrm{~kJ} .
\end{aligned}
$$

\therefore aletronc doe $W_{1-3}=W_{1-2}+W_{2}-3=6.93-5=1.93 \mathrm{~kJ}$
(N aye In a reuesible non-How process, the work is dore by a substance in accedence with $V=\frac{2.80}{10} \mathrm{~m}^{3}$, whore p is pressure in bax. Find the wish K doneicors by sisistem as progun increases from 0,7 bar to 7 bar. es. A rieverqibie gen flow process with

$$
\begin{aligned}
& p_{1}=0.7 \mathrm{bav}=70 \mathrm{kPa}, p_{2}=7 \mathrm{bav}=700 \mathrm{kPa} . \\
& v=\frac{280}{p} \mathrm{~m}^{3} ;
\end{aligned}
$$

:To find P work interaction by the gisstom, Analysis The initial and final volume of Wrecking substance, $v_{1}=\frac{280}{p_{1}}=\frac{2.80}{0.7}=4 \mathrm{~m}^{3}$.

$$
v_{2}=\frac{2.80}{p_{2}}=\frac{2.8}{7}=0.4 \mathrm{~m}^{3}
$$

Fo a given Relation, pressure P can be exprused S $P=\frac{2.80}{V}$ bow $=100 \frac{x 9.8}{V} \mathrm{kPa}$ The woledne by a sythom cark e clatter 5

$$
\begin{aligned}
& \text { clatter } \\
& W=\int_{0}^{2} p d v=10000.8 \times \int_{4}^{0.4} \frac{1}{v} d v
\end{aligned}
$$

$$
\begin{aligned}
& =280 \times \ln V f^{4}=280 \ln \left(\frac{0.4}{4}\right) \\
& w=-64.4 .7,
\end{aligned}
$$

 to the square inst of the volume. The chistial prague is 10 bay in the cylinder and the initial volume is $0.1 \mathrm{~cm}^{3}$. The volume is now \because Changed so that the final proggme is 2 barr. Find The Wokkdone in $k J$.

The relation $p \alpha \frac{1}{v^{2}}$
$p_{1}=10 \mathrm{bar}=1000 \mathrm{kPa}$

$$
v_{1}=0.1 \mathrm{~m}^{3}
$$

$p_{2}=2$ bat $=200 \mathrm{kPa}$.
To find wirkidone during the process
Analysis The givenselation $p \alpha \frac{1}{v^{2}}\left(\sigma^{2}\right) p=\frac{k}{v^{2}}$
At state 1, $h_{1}=\frac{k}{v^{2}}$, where $k \times$
constandof proporitiondity.

$$
\begin{aligned}
K=p_{1} v_{1}^{r} & =(1000 \mathrm{kPa}) \times\left(0.1 \mathrm{~ms}^{3}\right)^{2} \\
& =10 \mathrm{kpa} \cdot \mathrm{~m}^{6} .
\end{aligned}
$$

Wlownt state 2,

$$
\begin{aligned}
p_{2}=\frac{k}{v_{2}}, \neq v_{2} & =\sqrt{\frac{k}{k_{2}}} \\
& =\sqrt{\frac{10}{200}} 0.223 \mathrm{~m}^{3} .
\end{aligned}
$$

Now, the wok done during the process.

$$
\begin{aligned}
W & =\int_{1}^{2} p d v=\int_{1}^{2} \frac{k}{v^{2}} d v \\
& =k \cdot\left[\frac{1}{v_{i}}-\frac{1}{v_{2}}\right] \\
& =10 x\left[\frac{1}{0.1}-\frac{1}{0.223}\right] \\
& =57.1 k J .
\end{aligned}
$$

- path function and point function 13
(1) path function:- The function which depends on the path of system passed and not on the end states is known as path function.
Example:- Work transfer, Heat Transfer.
(2) point function:- The function which depends on the end states mot on the path of the system is knownas point function:
Example:- property of system le, volume, temp, pressure etc.
'properties' are point functions:-
Thermodynamic properties are point functions. since for a given state; There is a definite value for each property. When a system undergoes a change from one state to another, the properties of the system also changes, which depends only on end states and not on the path followed between these two states. Therefore, Thase properties are called state functions $C D$ point functions. point functions can be rejpiegented by a point on any plot eg., Temperature; prague, volume edt, these porocities hale exact differtials designated by'd'rismbel). Firefox
in volume (or) profscune represented by $d v(o y d p$.

The differentials of point functions are exact coo perfect. differentials, and: the integration is simple

$$
=\int_{v_{1}}^{v_{2}} d v=v_{2}-v_{1}
$$

\rightarrow The change in volume this depends only on the end states of the system irrespective of the path followed.
\rightarrow Fo a cyclic process, the initial and final states of the system are the save and hance change in any property
$\because \ldots$ is zero. $\quad \oint d V=0, \oint d p=d, \oint d \tau=0$.
WORK TRANSFER- PATH FUNCTION
A quantity whose value depends on the particular path followed during the process is called a path function.

It requires a particular path and direction to represent the Quantity on any plot.eg\% heat work etc.
with reference to figure, it is possible to tate a system boom state 1 to state along many quasi-stitic paths such as A, B, C. since the area under the each curve represents the work for each process, the amount of writ involved in each cage is not a function of the end states of the process and it defends on the path, The system follows in going from state 1 to state 2 .

The path functions have inexact differentials represented by the symbol δ. Therefore, a differential amount of whee cor heat is written by δW (or) δQ.

HEAT TRAN SEER - A PATH EUNGTONI-
Heat transfer is a path function, that is the amount of heat tronsfeved when a system changes from state (1) to (2) depends on the intermediate stater through which the system pogges. he, its paths. Therefore δQ is an inexact differential and we write

$$
\int_{1}^{2} \delta a=Q_{1-2}
$$

path function

1. If the change in function depends
2. If the change sinfunction depends only on initial and final state of processes, then that function is called point function. then that function is called path function
3. The function depends on path followed 2 This function does not depend on path followed by the system. by the system.
4. Examples:- work, energy (heat) etc.
5. The differentials of path functions The differentials of path functions
are inexact (on imperfect diffentidy 4. The differentials of point
functions are excacococ
6. This function dor not satisfy the equation $d z=M d x+N d y$
functions are exacoco perfect differmalal
7. Example, presume, volume, tarp, (Thermodynamic properties,
8. This function satisfies $d z=M d x+N d y$

2
(peap) A gas 'contaired in a piston cylinder arrangement" expands flom $0.75 \mathrm{~m}^{3}$ volume to $1.28 \mathrm{~m}^{3}$ volume until the pressue remalss constant at 200 xpa if the gageas sygtem seceives 80 kf of wik bloma paddle whed, deternine net whkedore by the system.
SoL Given, $V_{1}=0.75 \mathrm{~m}^{3}, \quad v_{2}=1.25 \mathrm{~m}^{3}$

$$
p_{2}=p_{1}=200 \mathrm{~K} P_{a} .
$$

padde wheel wrk $=-80 \mathrm{~kJ}=W$, (wik suplied).
Take, $\omega_{2}=w$ ork done by the systan $=\int_{v_{1}}^{v_{2}} \phi d v=p\left(v_{2}-v_{1}\right)$

$$
w_{2}=200 \times 10^{3}[1.25-0.75]=100 \mathrm{KJ} \text {. (tve) }
$$

\therefore Network dove, $W \cdot D=W_{1}+\omega_{2}=-80+100=20 \mathrm{~kJ}(\mathrm{tr})$.
(PROB) A vacuum gange connectes toa tank leads 30 KPa at a location where the bavoncter read 755 mm of ${ }^{2}$. Calulate the absolute presgue in the taunk assuning the dengety of Ity (mercury) to be $13,590 \mathrm{Nz} / \mathrm{n}^{3}$.
sor.
Vaculum gange reading $p_{s}=30 \times 10^{3} \mathrm{pa}$ dergits of mercury, $l^{l}=13,590 \mathrm{~kg} / \mathrm{m}^{3}$.
\therefore Le kuar that, vacuum phegsine, $\operatorname{Pr}_{r}=e \mathrm{gh}$.

$$
30 \times 10^{3}=131590 \times 9.81 \times h
$$

$$
=225 \mathrm{gni} \text { \& } \mathrm{itg} .
$$

\therefore Absolute presfere $=$ B-Fornctice pressure-vaculu gauge pretsee
Differences.

$$
=755-225=530 \text { munt } \mathrm{Hg} .
$$

Adiabatic procass $\%$ arse ozentretic process 位iferenco.
Adidaatic process- on an adialatic process, the gos changas its condition withort the trioutfer of theat to (as) bim the surboundings: pressue, volume and temperatave of The gss valy during ans adiabatic procss. During an adipbatic process; no heatis trousferned to the ges hom an external saurce and tr ges onugt do tee externt wik at the expare of its oisn evoigy. An adpreptic expronsias s always accompained by a decreage in the teurgentine of the gas is the gas gives upits olsn inter,nal enorgy to do wak
Isantropic process:- A revasible adiabutic process is called osentropic procass.

Reversible process : of the process is assumed to take place sufficiently slowly so that the deviation of the propaties at the intermediate states is infinitesimally small, Then every state passed thatrough by the system will be in equilibrium. suction process is called quagi-static bors reverilat process.

Irobeliersible process: of the process fakesplace in such manner that the properties at te intermediate states are ont in equlfiborsuna state (except the initial and final sate), them the process said to be non-equitilsilim (oo lorreverible process. This processis Represented: by brokenlins on the propecty diagram.

All the processes occuring in nature are... irreversible. When the ge processes are revered, They cannot return to their initial. state of the system without changing the surroundings.
Erreluyibility:- when an actinal process occurs, it produces
Erreveribility:- when in actin process cannot be selvaged and the system and its surroundings cans be restored to their initial states. During an irreversible process, the total energy remains constant but capocity to do work is lost due to degradation of sone portion of available energy.

This degradation of energy s resparitale for entropy generation with in the system during a process. The entropy generation is always equal to irreversibilities. involved in the process. \therefore Irreversibility, $I=W_{\text {max }}-W_{\text {useful }}$ (ky).

* Causes of Inevesibility:- Irsevensenilits of the process may be caused due to (U) Mechanical (or) tHermal prevergitility
(2) Internal and External irrevespibity.
i) Mechanic l irreversibility, os associated with fliction. When two bodies have relative movement, a forctional force opposes the unction at the interface of these two bodies and some wake is lest to overcome. This friction. ten direction is reneged, some work is further required to overcame bliction. Friction is do sindived between solid and duld, 4 bayes of fluid die to different velocikios.
(ii) Thelinal Irreversibility:-- Is associated with trangfou of heat due to finite terpeciative difference between system and its gerrandings. An amount of heat lest blona system during compression con not be regained during expansion prises causes irreversibility.
(iii) Internal orevoribitity is also caused. due to mixing of different layer of fluid at different temperateness. ot is do due to thee cos. unrieptrained expansion of fluid.
(iv). External irreversibility: is associated with friction at bearings and friction between at moptheric air and rotating manors.
* Condition for a Reversible process:-
1). The process should not involve blictions of any kind.

2) Heat. Fromsfor should. not takes plate due to. finite tergentwe difference between system and scrorandings..
3) There should not be mixing of fluid layer at different tarpectars.
4) There should not be flee and cinsegtrained exposition
5) The process guest past thrangha gamest

*

Forms of work Transfer (Other Types of Work Trangfen):- 18
There are forms of work other than pau cor displacement work. The following are the additional types of work transfer Which may get involved in system - Surroundings interactions.
(1) Electriciol work:-

Electrical work \rightarrow the energy interaction due to crisping of electrons at the system boundary. on an electric field, the

Resistance heating os electrical work. dectrons in a wire move under the
effect of electromotive, forces for doing work [Driving a motor', fan etc. x]. The resistance heating as an electrical work.
(19) Rate of so electrical wis transfer shown bifsum.
$\bar{W}_{E}=V I$ watts.
The wok dove W_{E} in time Δt is, $W_{E}=V_{1} \Delta t$ (Joules).
(2) MECHANJCAL WORE:-

In rerechanics, the work dore by a system is expressed as a product of force (F) and displacement $(S$).

$$
W=F S
$$

If force is not constant, the work dore is obtained by adding the differential aments of work, $w=\int_{1}^{2} F d s$.
(3) SHAFT WORK:-

The shat work is the wire associated with energy tromsmision with a rotating shaft. sit is the product of Wok of a moving shaft toque (product of force and radius of shaft) and angular displacement.

$$
\text { ow displacement. cos } F=\frac{T}{r}
$$

This fire acts through a displacement par unit time,

$$
S=2 \pi r \times \frac{N}{60} .
$$

Shaft Work per unit time, $W_{\text {shaft }}=F s=2 \pi r \times \frac{N}{60} \times \frac{T}{2}$.

$$
W_{\text {shat }}=\frac{2 \times N J}{60} \text { watts. }
$$

(4) spring work:

When force is applied ana -sporing. its length changes.

If $d x$ is change in the length of a spring under the influence of a force F, then the wirkdone by the spring is

$$
\delta W_{\text {Spring }}=R d x
$$

where The force F exerted combe defined virterins if spring constant. $k(N / m) \sim$.

$$
\therefore F=k x \text {, Newtons. }
$$

Then spring work $\delta W=k x d x$.
If spring length changes fam x_{1} t? x_{2}

$$
\therefore \quad W_{\text {spoon }}=k \int_{x_{1}}^{x_{2}} x^{2} d x=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right)
$$

paddle wheel work (ar) storing work:
As the weight is lowered and the paddle wheel twins, there is work transfer into the fluid system Which gits stirred. Since the volume of the
 seffem remains constant $\int p d v=0$.

If in is the mass of the weight lowered throighia digtace $d z$ and T is the torque transmitted by the shaft in rotating through an angle $d o$, the differential wolver, trangfor to the fluid $d w=m g d z=\tau d \omega$.
total works transfer, $w=\int_{1}^{2} m g d z$.
Flows wok on plow energy: refers to work required to pugh a pros constitutes an open systain, in toshes the working substance enters and leaves the control surface of a system.

HEAT:- st is a transfer form of energy that flows between two systems (or a system and its surraindirgs) by virtue of the temperateve difference between thenv. The temperature different e is the potential for teat transfer. There There would be no heat transfer between two systems if they are at the same temperature.
The amount of heat transferred from the states 1 to the state 2 is designated by Q_{1-2} cos Q and it is merged in Joules (orr kilo Joules ($N J$).

Heat transfer per unit mos of a systems is defined by of $=\frac{Q}{m^{n}}(k J / k g)$.
The heat cor heat energy is generally refined to as teat
The transfer of heat in to a system is called heat addition. transfer. con hex supply
The transfer of heat from the system is called heat rejecter.
Similarities between Heat and work

1. Both are recognized at th boundary of the system as they crosit, thus both teat and work are boundary phenomena.
2. A system may hake energy, but not heat (or) work because, heat and work are transient phenomena.
3. Both are associated with a prows, not a state. Therefte, unlike properties heat (or) whisk has no meaning at a solute.
4. Both are jut functions. They ar replogented by a path followed during the perocas.
5. The equations for heat ant work transfer can n not be differentiated exadly. The differential quantitts of hent and work are represented by as δQ and δW r respectioly,

Disfomilaritiel between Hent and work transfer
in Heat is a low -grade energy, sher of the work is a high grade every.
2. Heat transfer tokes place due to temparative difference only, while wok transfer may take place due to any potential difference in pressure, voltage, height, velocity and stemperetre etc-1
3. A stationary systems cannot do Work, while such a restriction is imposed ow heat transfer.
4. The entire quantity of work can se converted into heat. (or any then from of energy, while convorstan of the entire quantity of heat into whisk is not possible
5. Conversion of wick into heat con any other firm of energy is popsicle with a single process, whit convorsia Of hat into work requires a complete 'cyclic procos. life a steam pored plant.

FRa; Explain Thermodynamic system, surroundings and Universe, illustrate the sine with examples.
Sow Thermody namic system:- A thermodynamic systemics simply a system is defined ${ }^{2}$ as a certain quantity of matter 100 a prescribed region in space considered for thermodynamic study (or) we bolus our attention to study is properties. The study ado involves changes in properties due to exchange of energy in the form of heat and WBK. The system may be a quantity of steam, a mixture of vapair and goes 00 a piston-cylinder assembly of an I. c-engine and its contents.

For the description of a thermodynamic system, some of the following quantities need to be specified.
(i) quantity os well os composition rato
(ii) measurable properties such -5 pressure, temp and volume of The system.
(iii) Energy of the system.
saibroundings: The region outside the system, is called the
sourrunding coo environment.
Boundary: The seal 60 imaginary surface that separates the system fris's furroudirgs is culled the boundary: The boundary maybe fired (o) movable. The boundary may change shape, volume, position and Er) orientation witt respect is obgenter. For example, an ellstic ballon change in shape s volume during a certain process.
unruerge- system plus sixroodings put together is knamas universe. Hence it has no bandarics and is of infinite size.
PRes: Distinguish between closed system, open system e in isolated system with guidable examples. system:- on a closed system, the mass is fixed. [82]. (1) closed system:- on a closed system, the mos is iced
 iii) steam power plant etc.
(2) Open system:- on an open system bath mass and energy cross the boundary.
Ex:- plow through tunes \& Naples:
phidias $\xrightarrow{2} \Rightarrow$ third air Water tube bolter:
 nor mass transfer occurs acres the boundaries. abs, hails any interaction with surroundings.
Ex:- i) Thermoflosk
2) Insulated
chamber.

PPRQB Show that Writ is a path function and not a state function
SoL. Work is a path function and not a state function. This combe proved with the help of the P-V diagram. on the pu diagram, a systems is at slate 1. TD move the system Glom state 1 to 2 , it can follow any path such os A, B, C. eft. The area under the curve reprogents the wikdara.
Here the area under the each curve is not equal the even though the $\rightarrow v$ initial and final stone one same From These, we can conclude that whit is a path function and not a state function.
[PAS Justify the statement that W8K and heat are not properties.
SOLD Consider avdume of (v) gat enclosed sin piston effinder aserthy os shames trance. of the oft in leaved to expand by changing is pressure 8 som p_{1} to t_{2}. oncreoge in volume of the goes causey the piston to mole outwards and hence work is

$\rightarrow v$ done by the gas. The expansion of the process bloom p_{1} to p_{2} is platted on p_{-v} diagram Now, if the gas initially. Was allased to expand by a different procoss, say B, it would have followed the path $1 B 2$. Therefore, it makes is cleat that wilkdove by If gas while. following path $\mid A 2$ is different than that of path $1 B_{2}$ as both processes follows different paths. Hence, it can be said that wok is not a point function but a path function. The differential of put function is chiexact and hence workdone should be written od $8 W$ instead of $d W$:
Heat is a path function:- Consider a system of gas in a piston cyludew arrangement. Let the gas - be cation to a state 2
 than state $1 t 2$ thraigh process p and back to initial state thrash process. $\rightarrow v$ The gas can also be tater to sinitial state by another prows R. Apply pirgt law to both cycles $[1 P 2 Q 1, \mid P 2 R 1]$

$$
\int_{1 P_{2}} \delta Q+\int_{2 Q_{1}} \delta Q-\int_{1 P_{2}} \delta W-\int_{2 Q_{1}} \delta W=01 \quad\left\{\begin{array}{l}
\delta Q \tag{2}\\
\delta P_{2}
\end{array} \int_{2 R_{1}} \delta Q-\int_{\mid P_{2}} \delta W-\int_{2 R_{1}} 8 W=0\right.
$$

Substraeting 2 im equation 1,
Le know wisc is a part function

$$
\int_{2 a_{1}} 8 a-\int_{2 R 1} 8 a-\left[\int_{2 R_{1}} \delta W-\int_{2 M} \delta W\right]=0 \text { he know } \int_{2 A_{1}} \delta W-\int_{2 R 1} \delta W \neq 0
$$

pros. If a g ge of volume $600 \mathrm{~cm}^{3}$ and at a prese
of 100 kPa , is comprested quati-stitially to PU 2 cost until th volume becomes 2000 Sol. $P_{1}=100 \mathrm{KPa} F 1$ barr $105 \mathrm{~N} / \mathrm{wr}^{2}$
$V_{1}=6000 \mathrm{~cm}^{3}=0.006 \mathrm{~m}^{3} ; V_{2}=2000 \mathrm{~cm}^{3}=0.002 \mathrm{~m}^{3}$. Final prapsine $\left(P_{2}\right)$: $P_{v}{ }^{2}=P_{1} v_{1}^{2}=P_{2} r_{2}{ }^{2}$.
$P_{2}=P_{1}\left(\frac{V_{1}}{\sqrt{2}}\right)^{2}=1\left(\frac{0.006}{0.002}\right)^{2}=9$ bar.

PRes. A mass of 2.5 ky of cir is compressed in a quagi-statce pries flam 0.1 MPa to 0.7 MPa for which $p V_{0}=$ constant. The initial volume is $0.8 \mathrm{~m}^{3} / \mathrm{ag}$. Find the wrikclone by the piston to compruss the air.

Wirkdore in 98 otherral pray, $\omega_{1}-2=p_{1} v_{1} \ln \frac{p_{1}}{p_{2}}=0.1 \times 10^{6} \times 2 \ln \frac{0.1 \times 10^{6}}{0.7 \times 10^{6}}$

$$
=-389,182 \mathrm{~J}=-389.182 \mathrm{~kJ}
$$

PRose A gas expands according to equation $p r=100$, where p_{i} the profuse in KPa and V is the specific volume in $\mathrm{m}^{3} / \mathrm{kg}$. The initial prespane of the gas i 1000 kPa and final preserve is 500 kPa . The gases then heated at constant volume back to its original

sos. $P V=100$; Initial pressure, $P_{1}=1000 \mathrm{kN} / \mathrm{m}^{2}$ At state 2, pregeque, $P_{2}=500 \mathrm{kNFm} \mathrm{m}^{2}$, At slate 3, final pressure, $P_{3}=p_{1}=1000 \mathrm{kN} / \mathrm{m}^{2}$

Woikdane during $(1-2)$ process $\quad P_{V}=100=P_{1} V_{1}=P_{2} V_{2}$ (Contact Tare $\frac{\text { Poses })}{}$
$P_{1} v_{1}=100 ; V_{1}=\frac{100}{1000}=0.1 \mathrm{~m}^{3} / \mathrm{kg} ; V_{2}=\frac{100}{500}=0.2 \mathrm{~m}^{3} / \mathrm{kg}$.
$W_{1-2}=P_{1} v_{1} \ln \frac{v_{2}}{V_{1}}=1000 \times 0.1 \ln \frac{0.2}{0.1}=69.315 \mathrm{~kJ} / \mathrm{k}_{1}$.
Wrikdare $\left(w_{2}-3\right)$ durirs $(2-3)$ constant volume process, $\omega_{2-3}=0$. \therefore total $w 8_{1} \mathrm{k}$ dore, $w_{1-3}=w_{12}+w_{2-3}=69.315+0=69.31 \mathrm{~kg} / \mathrm{kg}$.

Prose Explain clout eueasi-stitic proass.

(SQ.] When a process proceed en such a marries that the -system remains infinitesimally close to am equilibrium states at all times, it is called quasi- static (or) quasi- equillurlumi process. Let the gas initial at propaties $\phi_{1} v_{1} \tau_{1}$. The wet the gas siniticall inst balances on piston with upturn force

of the weight (W) is removed, piston will movie uppleards $\overrightarrow{a n}$ attacks equilibrtan state with properties $p_{2} v_{2} T_{2}$. The intermediate s Now, of the singh Height (W) is made upon.
small pieces of weights and these weights are
removed ore by ore slowly blum the top of pious,
The gas will pas through a series of equilibrium soto.
 of maspes.are very small, the gas would under go Aunsi-equilibritem exporeion prase s Quari-s)ntic work in a closed systan il 1

1) Constant pressure proms $(P=C)$; $w_{1-2}=\int_{1}^{2} p d r=P\left[v_{2}-r_{1}\right]$
2) Constant volume process $(V=c$] $w_{1-2}=\int_{1}^{2} p d v=0$ sine $d v=0$ 3) Constant tanpertive roast $\left(T_{2} C\right)$ $P V=c=p_{1} v_{1}=p_{2} v_{2}$
$w_{12}=\int p d v=\int_{p_{1}} \frac{c}{v} d v_{2} c \int t d v$

$=p_{1} v_{1} \ln \frac{v_{2}}{v_{1}}=p_{1} v_{1} \ln \frac{p_{1}}{p_{2}}=m R T_{1} \ln \frac{p_{1}}{p_{1}}$

 volume of $0.7 \mathrm{~m}^{3}$ to a final value of $0.2 \mathrm{~m}^{3}$. The secind proses tates hate at cosstat volure witt prestrue increality to 600 KPa . The third prooss to te begiming of the first-prous. skaten The Gcle an P-V co-ndiuty and colualte the ret work trappen.
prooss (l-2) :- contant presse empursimproces.
$t_{1}=k_{2}=200 \mathrm{kpa} ; v_{1}=0.7 \pi^{3} \psi v_{2}=0.2 n^{3}$
 preas (2-3):- constart vdine rupresian proces, $\quad[$ (-re)

\therefore Texel Hardoe, $W=W_{12}+W_{2}-3+W_{y-1}=-100+0+100=0$.
 by means of stiver posing troigh cytindev cover. The cytindw diantes 30.4 m . Dusing th stiniog prouss
 by th fluid dirtiy the process \hat{h} ekf. The. speed of the clectric mator driving if stiorer is 840 spm .
(1) Podale wak ($-v e$ badc) reouse wat idore by Stioner onfluide syth , Wp $z: 2 \pi N T \times 10$
$=2 \times 3.141 \times 840 \times T \times 12 \quad(-v e) \operatorname{cod} x$

$W_{\phi}=W_{d}=p=P A l=1.01325 \times 10^{5} \times \frac{\pi}{4}(0.4)^{7} \times 0.485=6174.2$ Jaly. -
(3) Not walkstere bo the flind, What $=2 \mathrm{~kJ}=2000 \mathrm{Jalv}$.
\therefore Wret $=W_{\text {padde }}+W_{\text {disphawt }}{ }^{\prime} \rightarrow \quad 2000=-52768 T+6174-2$
Power, $P=\frac{2 \pi n T}{60}=\frac{2 \pi \times 840 \times 0.08}{60}=7.03$ wath. $-\cdots T=0.08$.

 cia saunt ft hat kimatev.

 we knar tat value of the bdram, $V_{1}=\frac{4}{3} \pi 2^{3}=\frac{1}{6} * 9^{3} ; 3.5875=\frac{1}{6} \pi D_{1}^{3} ; D_{1}=1.899 \mathrm{~m}^{3}$
 similarly the the restom: $P=K D^{2} \Rightarrow p_{1}=K D^{2} ; \quad k=\frac{T_{1}}{D_{1}^{21}}=\frac{200}{(1.8993)^{2}}=55.44$. $\begin{aligned} \text { wrocere bo tit sithon, } w & =\int_{1}^{2} p a d \\ \cdot & =\int_{\frac{k}{6}}^{2} k D^{2} d v=k \int_{1}^{2} p^{2} d\left(\frac{1}{6} \times b^{3}\right)^{2} \times 3 b^{2} d D=\frac{1}{2} \times \times 55.44 \int_{1}^{2} D^{4} d D=87.08\left[\frac{p_{2}^{5}}{5}-\frac{p_{1}^{5}}{5}\right]\end{aligned}$ $=87.08\left[\frac{(2-394)^{5}}{5}-\frac{(1.8993)^{5}}{5}\right], 936.22 \mathrm{~kJ}$.

Unit 1
1.(a) What are the differences between system and control volume. Explain different types of systems with examples.
(b) A gas undergoes a reversible non-flow process according to the relation $P=(-15 \mathrm{~V}+17)$ where V is the volume in m^{3} and P is the pressure in bar. Determine the work done when the volume changes from 2.8 to $5.6 \mathrm{~m}^{3}$.
i) system is defined as definite region (o) area OO Space where thermodymmic process tire plate
2) system is focussed to study it properties
3) system has boundorice and boundary may be fluxed cor movable.
Ex:- A oas enclosed in cylinder bounded by
piston with weight ont te piston the preston
roaches usolvards duets heat addition
(4) system classified to open, cased, isolated
(i) Control volume is defined as an open system in uchicu. mass and energy floss int and out of system.
(2) control volume is keeping interest for fla energies and (3) Contend volume is fixed. An open system called cants volue. Ex ir Air compressor, turbine, engine etc. when mats and energy beth takelplace crests boundaries.
(4) Control volume is open System
sown B
Therirodymanic systems \rightarrow classification witt expeuples. See first auction.
For severable nan-blar process, $w=\int p d v=\int_{1}^{2}(-15 V-17) d v=-15 \int_{1}^{2} v d v+17 \int_{1}^{2} d v$
$=-15\left[\frac{v^{2}}{2}\right]_{v_{1}}^{v_{2}}+17[v]_{v_{1}}^{v_{2}}$
$=-15\left[\frac{v^{2}}{2}\right]_{2.6}^{5.6}+17[v]_{2.8}^{5.6}$
$=-176.4+47.6$
$=(-128.8) \times 10^{5}=-128.8 \times \frac{10^{5}}{10^{3}}=-12880 \mathrm{~kJ}$
-he sign due to work dare in the system.
1.(a) Differentiate between Macroscopic Microscopic view points from thermodynamics.
(b) A gas expands according to the equation $P V=98$, where P is the pressure in kPa and V is the specific volume in $\mathrm{m}^{\mathbf{3}} / \mathrm{kg}$. The initial pressure of the gas is 993 kPa and the final pressure is 488 kPa . The gas is then heated at constant volume back to its original pressure of 993 kPa . Determine the work of the combined process. Also sketch the process on P-V and T-S

MICROSCOPIC APPROACh (STASTICAS $\frac{\text { APPROACH) }}{\text { (}}$

ClASSICAL APPROACHJ.
(jj) A Cerifatio Quantity of matter is considered. (1) system Considers made wo of large no- it without taking in to account, the events occurring at molecular level. ot called overall behaviour ckessian therms dymanics
morales. These modeales have different velocities and energies constantly chang y witt time. 50, Thy approach de nowhere of-rittev.
statistical thermodymincs.

Requires sample mathematical formulae for Avalyses. (i) Reeving. Adiunsed statistical mathenster-1,
(3) properties are Their average values roxie presgeve of gas is average of pressure
(1) pooperting like volearty, mamentin, inupalye. cannot be engly measured by innstiviments on Ser to describe a system, only frets \qquad
(3) Large no. of vacibible seeded to derribo a system. So, This approach if couplicited. $p_{1}=993 \mathrm{kPa}, p_{2}=488 \mathrm{kPa}$

$$
\phi_{3}=t_{1}=993
$$ kpa .

Work dove during ssotterond proms, (1-2)
$w_{1-2}=p_{1} v_{1} \ln \frac{v_{2}}{v_{1}}=p_{1} v_{1} \ln \frac{p_{1}}{p_{2}}=98 \ln \frac{993}{488^{\circ}}$.
$=69.62$ Joules.
workdane. during constant inothe porous (2-3) $\omega_{2}-3=\int p d r=0 \quad[\because$ since $a r=0]$

precis 1-2 \rightarrow esther ... / pirarif ' $2 \rightarrow 3 \rightarrow$ co.sla.t void. sexes

1. (a) What are different types of thermodynamic systems ? Explain them with suitable examples.
(b) A fluid contained in a horizontal cylinder fitted with a frictionless leak-proof piston, is continuously agitated by means of a stirrer passing through cylinder cover. The cylinder diameter is 0.4 during the stirring process lasting 10 minutes, the piston moves out a distance of 0.485 m against a atmosphere. The net work done by the fluid during the process is 2 Kj . The speed of the electric motor driving the stirrer is 840 rpm . Determine torque in the shaft and power output of the motor.
soli(a) A Thermodynamic system is defined as a certain quantity of matter (os) a prescioibed region in space considered for thermodynamic study (v) we focus our attention to study it propaties. The study involves changes in propaties due to exchange of energy in the form of heat and work. The system may be a quantity of steam, a mixture of vapor r and gas atc.
(i) closed System:- on closed system, the mass is fixed. There is no moss transp accost its boundaries, but energy tranglen takes place in to (Or) out of system in firm of heat work.
 EXV- (A) Heating the gas ina galinder (B) Hot coffee In a steed tumbler
(ii) (e) steam power plant (D) closed cycle ans turbine pones plant. (ii) OPEN SYSTEM:- on open System both mass and energy corey the boumdiaies. Exioplas Treaigh tiber and Nosed.
 (3) wite tube boiler
 clopedsygtem
 belated system:- on osolated syition, the wis neither energy traplen nor mass truster across boundaries. (i) Thermotletk (ii) susultat chanter.

W net $=$ Widispliat - spade $=2000 \mathrm{~J}$.
Wade $=\frac{2 \pi N T}{60}-\frac{2 \pi \times(840 \times 10) T}{60}=879.48 T$-(4)
Wdspkent $=$ pa AL $=\left(1.01325 \times 10^{6}\right) \times \frac{\pi}{4}(0.4)^{2} \times(0.485)$. $\therefore \omega_{d}-L_{p}=2000 ; 6174-2-879.48 T=2000 ; T=4.746 \mathrm{Nm}$

1. (a) What do you understand by a state function Ghq path function
(b) If a gas of volume $6000 \mathrm{~cm}^{3}$ and ta pressure of 100 kPa , $/ \mathrm{s}$ compressed quasistatically to RV ${ }^{2}=$ Constant until the volume becomes $2000 \mathrm{~cm}^{3}$. Calculate the final pressure the work transfer.
(a) State function:- (es) point finctiax:- The function which depends andy on the end story and not onthe path followed during a thermodynamic process id knamas
 path function- The function which depends outre path of system poised and not on end state kerman path friction.
Ex:- Heat trasfer and wok traditor.

 similarly, Heat also changes according the process stich sffflowed. Heating wok are resulted
90'(b) arvo, $v_{1}=6000 \mathrm{~cm}^{3} ; p_{1}=100 \mathrm{kPa} ; v_{2}=2000 \mathrm{~cm}^{3}$. we knar $p v^{n}=c$; 80 $p_{1} v_{1}^{2}=k_{2} r_{2}^{2}$
(i) Final proseswe $\left(k_{2}\right) \Rightarrow p_{2}=p_{1}\left(\frac{V_{1}}{v_{2}}\right)^{2}=100\left[\frac{6000}{2000}\right]^{2}=900 \mathrm{kPa}$
(ii) work $\left(w_{1-2}\right)=\frac{p_{1} v_{1}-p_{2} v_{2}}{v_{1}-1}=\frac{\left(100 \times 6000 \times \sqrt{10}-900 \times 200 \times 10^{-6}\right) \times 10^{3}}{2-1}$

$$
\begin{aligned}
& =-1200 \text { Jones } \quad 2-1 \\
& =-1.2 \mathrm{~kJ}[-20 \mathrm{sigm} \text {, wat is dine on gas }]
\end{aligned}
$$

UNIT-IT

* FIRST LAW OF THERMODYNAMICS

The first lavs of thermodynamics, also know of the congelation of energy principle. at states that during any process, if the energy disappears in ore form, it appears in other forms, but its total quantity Remains always constant.

That is, the erengy can be neither created nor destroyed, it can only change is form.
For example, for the energy interaction between a system and its swrrandings, the energy lat by a systion oncyt be exactly equal to the amount of energy gained by the surroundings.
The first lats cam be proved mitherratically, but no process in mature is known to have violated the first late of thermodynamics.
at is the relation of energy balance and is applicable to any Kind of system [open cos closed] undergoing any kind of process.
Blander 1:-
Lit is congidiev a process. that invoice only heat transfer but no work interaction. A hot potato taken from oven is exposed to room ais. As a result \& heat transfer blow the hat potato, its energy will decrease. in absence of other effects, the decresc of total energy of the potato becomes equal to the amount of heat transferred to its swriandings. Therepre,
\qquad exprogied of $-\Delta E=-Q$

Whore $\Delta E=E_{2}-E_{1}$.
In the absence of any whisk interaction batpean a system and its scosondings, the amouriof cot heat transfer is equal to change si the evirgy of a syphon.

$$
Q=\Delta E \text { when, } w=0 \text {. }
$$

Example 2:- consider a Well-ingulted room hectell by. an electric hester. As a result- electrical woukdanes The energy of the room will increase. since the rom is adiabatic and cannot have sly tret interaction with its surroundings, the congelation of every principle dictates that electrical wikdore on the room mist be equal to sincresei of energy of the rom. $-W=\Delta E$. For an adiabatic process, The auoution wosk-done is end to the change in every of the sistam. $W=-A E$ when $Q \doteq 0$. Example 3:- consider wi sk and toot transfer simultameasly. The gas in cylinder bested. As the energy of the gas vicreages, its pregsesettarp also increases.
 Ant potato losing $Q=-20 \mathrm{~kJ}$ orangy. estreat ot id 1 boundary

As Then the gas will expand and work will be dove at the boundary of the system. The conservation of energy principle reveds that

$$
Q=W+\Delta E \text { where }
$$

$Q=$ Net heat trangfies across system boundaries

$$
Q-W=\Delta E
$$

$W=$ Net Work trougfer
$\Delta E=$ Net change in total energy of the system $\left(E_{2}-E_{7}\right)$
The total encigy of the system is the sum of internal energy U, -potential energy $P E$ and Kinetic energy $K E$.,

$$
\Delta E=\Delta U+\Delta P E+\Delta K E(k J) \text {. }
$$

Molly elfoed systems in practice are stationary, they dent have Kinetic energy and potential energy during a process.

The first la Lo of thermody ranics is reduced to

$$
Q-W=\Delta U \quad k J
$$

Mechanisms of Energy Trangfo: -
The energy can be transferred to GUs from a system in three forms. heat, work and mass flow.
(1) Heat Trangfer:-(a) Heat transferee to a system hicreages the energy of the molecules and thins an increase in the interne energy of the system, and heat transfer bloma system. decreases the energy of molecules and they result ins decrease of internal energy.
(2) Work Transfer (W):- Wreck lifers to the troursten of energydue to potential difference otter than temporative difference between a system and its boundary.

A rising piston, rotating shaft and an electric wire carrying current crossing the system boundaryall these energy transfers, are asp ciated with work interaction. The wok troubler to a system increases the energy of the system and Wok transfer flom.a system decrease energy.
(3) Mass flow m:- when mass enter the system, the energy of the system increages becange mass carries energy with it. Similarly, when sone mass leaks the system, the energy of the system decreases, because the leaving mass takes some energy with it.

First Law of thermodynamics for a cyclic prows

- Joule's Experiment'

Toilet conducted several experiments which led to the formulation of the First law of Thermodynamics. pulley
when weight is allowed to foll to a certain' distance, work is done on the wateriproduct of weight and distance moved] Tank? through the rotation of stirrer. When the stirrer Rotates inside the water, heat is Falling produced due to friction and thy heat generation ss reopened by the ome-gurement of rise in tempenatiore using thermometer fixed is container.

Further, the insulation flam the tank was removed and The chide system was transferees placed in a water bath. The heat was transfused blow the system in fulevito bring same initial state conditions.

During a Complete cycle, there was ret wrote input and ret heat output blow the system.
"Joule' found in his experimental obsewatias that,
Whenever a closed system undergoes a cycle, the work input to the system is proportional io te ret teat output:
ot is expressed os $\quad \oint \delta W \propto \oint \delta \infty$
$\cos \phi 8 W=J \oint \delta Q$, sinss Sing $\delta \delta w=\oint \delta a$
where, $J=$ constant of proportionality celled Mechanical equitatat of teat. = $2 t$ value $S 1$ in S-Tcinits.
Internal Energy (E)-A property of system
consider a system undergoing. a change of state them 1 to 2 along path A and. returning from 2 to 1, along path B. Then complots coddle $F A-2 B \rightarrow$.

Applying first lats of thermodignanics of cyclic

$$
\begin{aligned}
& \int_{1}^{2} \delta Q_{A}+\int_{2}^{1} \delta Q_{B}=\int_{1}^{2} \delta w_{A}+\int_{2}^{1} \delta w_{B} \\
& \int_{1}^{2} \delta Q_{A}-\int_{1}^{2} \delta Q_{B}=\int_{1}^{2} \delta \omega_{A}-\int_{1}^{2} \delta w_{B} .
\end{aligned}
$$

 steep.

Re-arronging, we get

$$
\int_{1}^{2} \delta Q_{A}-\int_{1}^{2} \delta \omega_{A}=\int_{1}^{2} \delta Q_{B}-\int_{1}^{2} \delta \omega_{B} \text {; The quantity } \delta Q-\delta \omega_{A} d E \text {. }
$$

(o) $\quad \Delta E_{A}=\Delta E_{B}$; similangls for cyclec procas $1-A-2-C-1$,
$\Delta E A=\Delta E C$.
The change in evergy +between two staty, $\frac{d \cos \text { depends uspos. patt followed }}{}$ by procoss, bepends between two slates 182

Perpetual Motion: Mactine of First Kind - PMM1
A device that violates the first lals of Thermodynamiss by producing wokk fhom notting is. called a perpetinal Motion machine of the first Kind. PMMI.
ot is defined os a machive which produces wirk evergy withont congeming PMM-1 wozk. an equivalent of evergy flom stter saurce- ot is impisfisle in actual practice, becange no machine can produce evergey of its own without congenning ang olfew form of evergy.
[PROB. A system is compsed of a gas contalined in a cyluider futted with a pistom. The gas expands 66 mm thate 4 for whics Determine the theat tragfened to © flom the system diving the process.
(84.) To find, The amount ©b. peat trangerved,

Analys's, According to the pirst lakrof Thermodynamig for a process,

$$
\begin{equation*}
Q-W=\Delta E \tag{1}
\end{equation*}
$$

(e) $a=W+\Delta E$
wher $\Delta E=E_{2}-E_{1}--25-75=-100 \mathrm{~kJ}$
ving the equation (1), $Q=W+D E$ tere $W=$ workdae by $g a s=+60 k J$.
$\therefore Q=60-100=-40 \mathrm{~g}$ (Hect (Hejected)

PROS A system undergoes a cyclic process composed of four processes $1-2,2-3,3-4$ and 4-1. The energy transfer is tabulated os

| process | $Q \quad \mathrm{~kJ} / \mathrm{min}$ | $W \mathrm{~kJ} / \mathrm{min}$ | $\Delta U \mathrm{~kJ} / \mathrm{min}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1-2$ | 400.0 | 150.0 | - |
| $2-3$ | 200.0 | - | 300.0 |
| $3-4$ | -200 | - | - |
| $4-1$ | 0 | 75 | - |

complete the table and determine the power output.
For process $1-2$;

$$
Q-W=\Delta E
$$

$$
\begin{aligned}
& Q-W=\Delta E \\
& 400-150=\Delta U ; \Delta U_{1-2}=250 \mathrm{k} 1 \text { when. }
\end{aligned}
$$

For process $4-1 ; \quad Q-W=\Delta U ; \quad \Delta U=0-75=-75$ kglinh
Fora cyclic process, $\quad \oint_{c_{0} d t e} \delta Q=\oint_{\text {es }} \delta W$

$$
\text { Q 1-2 }+Q_{2}-3+Q_{3}-4+Q_{4-1}=W_{1}-2+W_{2}-3+W_{3}-4+W_{4}-1
$$

$$
\begin{aligned}
& 1-2+Q_{2-3}+Q_{3}-4+Q_{4-1}=150-100+w_{3-4}+5 \\
& 400+200-200+0=w_{2-4}=255 / k+1 / 4 .
\end{aligned}
$$

$$
\therefore w_{3-4}=2=15+1 \times 1
$$

Ten process 3-4; $Q-W=\Delta U=-200-275=\Delta U_{3}-4=-475$

- Limitations or crotiassis of First Law of Thermodynamics
(1) When a closed system undongoery a thermodynamic cycle, The ret heat transfer is equal to the net wok tramper. This statement does not sates the direction of blow of heat and work Eli, whetter the heat blows from hot body to a eold body (or) bon a cold body, to a hot body]. It does not give any condition under which these transfer tokes place.
(2) The heat energy and mechanical work are mutually convertible. Though the mechanical work can be fully.

Converted in to heat energy, but only a part of heat every. Can be converted into mechanical work. This means that the heat energy and. mechanical work are not fully mutually convertible. on ottaisods, there is limitation an conversion of cheiform of energy into other.

A machine which violates the first law of thermody--namics is known of perpetual motion machireof the first kind PMM-A. at is defined as a machine which produces work energy Without consuming an equivalent energy for other source. such a machine is ompagible.
PRess. A stationary mass of gas is compressed without friction flam an initial state of $0.3 \mathrm{~m}^{3}$ and 0.105 MPa to a finial stated $0.15 \mathrm{~m}^{3}$ and 0.105 mpa . The prosguve is Remaining constant during process. There is a trousfenf 37.6 kJ of heat then the gas diving the prociass. Hows much does the interne energs of the gas change.
(sa.) First law for a system in a process

$$
\begin{aligned}
& Q=\Delta U+W \\
& Q_{1-2}=\Delta U_{1}-2+W_{1-2}=\Delta U+P\left(v_{2}-v_{1}\right) \\
& \text { Since } W_{4}=p\left(v_{2}-V_{U}=0.105 \times 10^{6} \mathrm{Y} 0.15-0.3\right]=-15170 \mathrm{~J}
\end{aligned}
$$

$Q_{1-2}=-37.6 \times 10^{3} \mathrm{j}$ (tue) since trangfou of heat flam gas.

$$
\begin{aligned}
-2 & =-37.6 \times 10 \\
\therefore & -37.6 \times 10^{3}=\Delta U+(-15,750) \\
& \therefore \Delta U=-37.6 \times 103+15,750=-21,850 \text { July }
\end{aligned}
$$

PROB. In a general Compression process $2 k 7$ of mechanical costs is supplied to 5 kg of wiring substance and 800 J of heat i \hat{i} rejected to the Cooling Jacket. Calculate the change in specific internal every.
50.

- For first lao thermidyvanic process.

$$
\begin{aligned}
& Q=800 \mathrm{~J}(- \text {-we }) \text { rejected, } Q=\Delta U+W \\
& W=2000 \mathrm{~F}(- \text { we) supplied, }-800=\Delta U-2000 \\
& \text { change in Interning: } \Delta U=1200 \mathrm{~J} .
\end{aligned}
$$

specific internal energy change $=\frac{\Delta U}{m+s}=\frac{1200}{5}=240$ of kg .

PROS. A fluid confined in a cylinder by a spring-loaded frictionless piston so that the pressure in the fluids a linear function of the volume $P=a+b v$. The internal every of the fluid is given by the following equation $u=34+3.15 \mathrm{pV}$ whore $v i$ in $K J, ~ P$ is in KPa and V is in m^{3}. If the fluid changes 610 m an initial state of $170 \mathrm{kPa}, 0.03 \mathrm{~m}^{3}$ to a final state of $400 \mathrm{kpa} \mathrm{sc} 0.06 \mathrm{~m}^{3}$. With an no wok other than that dove on the piston. Find the direction \& magnitude of the wick and heat transfer.
882.

$$
\begin{aligned}
& k \text { and hear } p_{1}=170 \mathrm{kPa}, v_{1}=0.03 \mathrm{~m}^{3} \\
& p_{2}=400 \mathrm{kPa}, v_{2}=0.06 \mathrm{~m}^{3}
\end{aligned}
$$

change in internal every, $U_{2}-U_{1}=3.15\left[P_{2} v_{2}-p_{1} v_{1}\right]$

The relation between P and $V \hat{s}$ given by,

$$
\begin{align*}
x= & a+b v \\
\text { at } p_{1}, v_{1} ; \quad & 170=a+b \times 0.03 \\
\text { at } p_{2}, v_{2} ; & 400=a+b \times 0.06 \\
a= & -60 ; \quad b=7667
\end{align*}
$$

SAving (1) < (2),

$$
\begin{aligned}
& =a\left(v_{2}-v_{1}\right)+b \cdot\left[\frac{v_{2}^{2}-v_{1}^{2}}{2}\right] \\
& =\left(v_{2}-v_{1}\right)\left[a+b\left(\frac{\left.v_{2}+v_{1}\right)}{2}\right]\right. \\
& =(0.06-0.6) 3)\left[-60+\frac{7667}{2}(0.09)\right] \\
& =8.55 k] .
\end{aligned}
$$

$$
=8.55 \mathrm{~kJ}
$$

Loikdone by the system, the magnitude being 8.55 kJ Heat torpfer involved s given by

$$
\begin{aligned}
& \text { sher divolved } s \text { given ty } \\
& Q_{1-2}=v_{2}-U_{1}+W_{1-2}=59.5+8.55=68.05 \mathrm{~kJ} \text {. }
\end{aligned}
$$

PPROS A sysitan recesses 200 k 7 of heat at constant voshe process and rejects 220 kJ of hint at constant prossun and 40 ky of woks dore on the system. The systems brought to its origins state by am adiabatic prices calculate the adiabatic work if the in tical sintering energy is 240 kJ , the calculate the value of miteinal verger at all points.

Q1-2 $=200 \mathrm{KJ}$, heat is received

$$
Q_{2-3}=-220 \mathrm{~kJ} \text { (heat-riected) }
$$

$\operatorname{linitial~} Z_{1}=240 \mathrm{~kJ}$ onterrd evergs,

W8x. done diving the proced, $\omega_{2-3}=-40 \mathrm{~kJ}$. (Lorks dove on the sistem)
proess $1-2$ censtantvolure procoss

$$
\begin{aligned}
& \left.1-2 \quad \frac{\text { Censtant voune rince } \int}{W_{1}-2=0 \quad \text { sinces }} p d v=\Delta U V_{1}=V_{2}\right] \\
& \therefore Q 1-2=\Delta U=\Delta U \\
& 200=U_{2}-U_{1} \\
& \therefore U_{2}=200+U_{1}=200+240=440 \mathrm{kJJ}
\end{aligned}
$$

proces $2-3 \quad Q_{2-3}=-220 \mathrm{~kJ}$
According to first lais for a proos 2-3,

$$
\begin{aligned}
& Q_{2}-3=\Delta U+W_{2}-3 \\
& -200=\Delta U-40 \\
& \therefore \Delta U=-220+40=-180 \mathrm{~kJ}: \\
& U_{3}-U_{2}=-180 \mathrm{~kJ} . \\
& \text { an }+U_{2}=-180+440=
\end{aligned}
$$

$\begin{aligned} \text { giternal erongeat } \quad \therefore U_{3} & =-180+\mathrm{U}_{2} \\ \text { state } 3, \quad U_{3} & =-180+440= \\ U_{3} & =20 \mathrm{~kJ}\end{aligned}$
for process (3-1) adiabatic process:-

$$
Q_{3-1}=0
$$

Ro coclic process 1~2-3, we have

$$
\begin{gathered}
\oint_{2} d Q=\oint_{Q_{2-3}}+Q_{3-1}=w_{1-2}+w_{2}+w_{3-1} \\
Q_{1-2}+Q_{200}-220+0=0-40+w_{3-1}
\end{gathered}
$$

$$
\begin{aligned}
& 1_{1-2}+Q_{2-3}+Q_{3-1} \\
& 200-220+0=0-40+w_{3-1}
\end{aligned}
$$

Adiabatic wolk:: $w_{3-1}=-20+40=20 \mathrm{~kJ}$

TEMPERATURE:-
Jemperative can be defined as a meagureof hotressicar cddness. The property which distinguishes Thermodynamics bloom other sciences is temperature, ore might soy that temperative bears is important a relation to thermodynamic as force to statics cos velocity to dynamics. Tomperative is associated with the ability to distinguish hat from cold.

When two bodies are at different temperature are brought into contact, after sometime. They att ais a common temperature arad are then said to exit in thermal equilibordum.
*
Zeroth Law of Thermodynamics
It stater that iotiein tiro systems ane in thermal equilibrium with a third system, they intern have thermal equilibrium with each otter.

- Consider twos systeris S_{1} and s_{7} lurch. are separated by am adiabatic wall, and a Third system S_{3} is in contact with both the systems S_{1} and S_{2}.
- Systems S_{1} and S_{2} are individually in thermal exulibitum With a third system s_{3}, ten the systems sided s_{2} will do be in the anal equilibrium. Witt reach other, ellen \#tough they ae nat in contact.
Meagenement of Tempendpere ;
The meagevernent of temperature depends upon establishment of Therand equilibrium between a system and tie device wed to neogene the, tempentave. The serving device isinould have at lost one mearenalate property that change with change in fere tempenture. such a property. is called a thermometric property. The substance which shows the changes in the thermometric property is called "Thermometric substance." List of Thee dynamic Thermometric properties and devices are glean belar
(1) Change in dimension:- Expansion en Contraction of metal such as . omerany-in-gl-8s thermometer.
(2) Change in elactricad ragitande of ruetints 2 semi-Conductors suchas resistance thermometers is thermistors
(B) Thermoelectric emf between cold and hot junction, suchas Thermocouples.
(4) change in intensity and colorer of emitted radiations such es pyrometers.
Commonly ied Thermomatais are a) Liquid-in-glass Thermometer
b) Constant volume gas thermanider
$a)$ Liauld-in-gless Thermometer:-
at works on expastion corr contraction of a thermometric substances with temperature.
st consists of a wniffom
diander glass capillary table connected to a bulb filled with a liquid at ar end [.mercury]. As the terpenatione inclaages, the fluid exipindy in volume and rises in the capillary. The height of liquid column is: Calibrated in to a tempenative scale, which may \& Ttenbe read. Mercury, Alcolnd, ether are commaliy used.
Constant volume gas Thermometer
The thermometer consists of a
i) bulb which encloses a fixed mass of an
iii) U-tube manometer with flexible bend.

The capillary tube connects the gas bulls to ore lamb of the manometer: the other limb being open to atmosphere.

The flexible bend of the manometer helps to raise cos lower the limb open to atmsiptere
 so that mercury camb made to stand at fixed mark on the limb
communicating with the bulb. This is to ensure that volume of the gas in the bulbs 5 a maintained at constant value. During operation, the bulb communicate with a constant temperature bath. There is exchange of teat between the bath a and bulbs until both attain the thermal equilibrium [Equality of temp]. Due to teat transfer to the bulb, the gas in the bulbs expands and pushes the mercury downwards in right limb.. The flexible tubing it then adjusted sotint mercury level apus attains the position of fixed monks.

The difference en the level of mercury in the two limbs is recorded, " and absolute pressure p, is determined by hydrostatic equation.

$$
p=p_{\text {atm }}+\mathrm{lg}_{\mathrm{g}} h \text {, where } \rho_{2} \text { density, } h=\text { difference of mercury }
$$

Porstly, the gas bulb is placed in a constant temp. bath at the triple: point (27315y) temp and corresponding pressure $t_{t p}$; calculated. Now, the bulb is brought in contact with a system whose temp. Ts to be omeagured and measure the plesfice, P.
\therefore The new temperature, $T=273.15 \times \frac{p}{P_{t p}}$.
Electrical resistance Thermometer
in the resistance thermonetes, the change in resistance of a instal wire due to its change. in temperative is the thermometric property. The wire; blequently platinum, may be incospotad in a utheat-stone bridge circuit. The platinum resistance thermometer meagunes temperative to a high degree of accuracy and sensitivity, when
 makes it Suitable as a standard if u the calitoration of other thermometers.

On a restricted range, the following quadratic equation is often eyed. $R=R_{0}\left(1+A t+B t^{2}\right)$.
there $R_{0}=$ resistance of platinction wire whenit is suinoinded by
A, B, are constants.
TEMPERATURE SCALE:- TO Meagre the terppentive Of a system, some numerical Values are sisignad on the thermometer. There numerical values on ineermanateo together are called temperative scale.

To gie numerical value to the tomperatueda body we have to define a scale of temperature. This is to chaos two fixed point tempenative are the melting pontoon ice and the otter boiling point of water (steams) at 1 atm as fixed dempenatine points. we affign orbitisary T_{1} to ice point and Ts to steam point, correspondingly let the length of the mercury colurom are l_{1} and l_{2} respectively. The terpenatave correspondly to any length l may be defined assuming linear splaticici.

$$
\therefore \frac{t}{t} \Rightarrow a l+b
$$

Thus a change of one degrees in temperature meorones means a change of $\frac{l_{2}-l_{1}}{t_{2}-t_{1}}$ in the length of mercury column.
There are four different scales:-
(1) Centigrade scale! - it is also knownas Celgins scale. on this, melting point of ice is marked as $0^{\circ} \mathrm{C}$ and boiling point of water as $100^{\circ} \mathrm{C}$, under atmospheric pressure. space between two points is divided into 100 end pasts. ot is dented by ${ }^{\circ}$ C.

Linear Equation e

$$
\begin{aligned}
& t=a d+b \\
& \begin{aligned}
0 & =a l_{1}+b ; \\
100 & =a l_{2}+b ; a=\frac{100}{l_{2}-l_{1}} ; \quad b=-a l_{1},
\end{aligned} \\
& \therefore E^{+} C=\frac{100}{l_{2} l_{1}} \times l-\frac{100 l_{1}}{l_{2}-l_{1}}=100\left(l-l_{1}\right)^{\frac{1}{l_{2}-l_{1}}} \times l_{1}^{\prime} \\
& =\frac{-100}{l_{2}-l_{1}} \times
\end{aligned}
$$

(2). 'parjesatarit, Fahrenheit scale:-
it: fir Bi and $210^{\circ} \mathrm{F}$ are ice Point and steam pountineforedy.

$$
O F=\frac{180}{l_{2}-l_{1}}\left(l-l_{1}\right)+32
$$

(3) Absolute tomperateve (kelvin)

$$
T(k)=T\left({ }^{0} C\right)+273.15
$$

(4) Rankine scale $T(R)=T\left({ }^{\circ} F\right)+45967$.

WROB The pressicic in a constant gas Thermometer is measured af 32 mm of Hg above atmospleice pressure at triple point. Detaining tie temp
 The baronstev reads 752 amm of Hg .
Sol. Absolute: pressure at triple port, $p_{t p}=752+32=784 \mathrm{mmof} \mathrm{Hg}$.
Absolute pressure at given purpure, $p .2 .752+76=828 \mathrm{~mm}$ of tg -
. Triple, point tempentave, $T_{A T}=273.15 \mathrm{~K}$.
To find Temperative T at pressure P.
Analysis:- F or construe volume gas theiruonetw, $\frac{P+p}{T_{E P}}=\frac{p}{T}$
(ब), $T=T_{A P} \times \frac{P}{P H}=273.15 \times \frac{828}{784}=288.48 \mathrm{~K}$.
untancrin temperative, $T=288.48-273.15=15.33^{\circ} \mathrm{C}$

Pras. . The temperative scab of a eertain theimonate is given by the relation $t=A \ln P+B$, whore A and B are corstants and pis the Herominetry plopaty of the fluld in thermonatao. At ice point and stean point, it the thermomatric propecty is found to bp 1.5 and 7 is ropectively, What will be the tempercture correspond ong the the themomatric profoenty of 3.5 on calsius sole?
Sol. mitial profaty

$$
p_{1}=1.5
$$

$$
\begin{array}{ll}
\text { gnitial propery } & R_{2}=75 \\
\text { Find propety } & T_{1}=0^{\circ} \mathrm{C}
\end{array}
$$

Ice-point temperdeve $J_{1}=0^{\circ} \mathrm{C}$
Steam-point tempenabue $\tau_{2}=10 \mathrm{~S}_{\mathrm{c}}^{\mathrm{F}}$
Thermmetic paoperty $p_{3}=3.5$
To find The temperative correspanding to themometric profects of 3.5 polyorse- The relation : for temipiuderen \& given of

$$
t=A \ln p+B .
$$

At rae point, $O=A \ln (1-5)+B$:
(0)

$$
0=0.405 A+B
$$

\therefore int steam point, $100=A \ln (75)+B$
(0)

$$
\begin{aligned}
& 100=A \ln (18)+1 D \\
& 100=2 \cdot 015 A+(2)
\end{aligned}
$$

Solving (1) (2); schetracting exinction (1) tran (2), haget

$$
100=1.6 ; A ; A=62.13 ; B=-25.2
$$

Using A and B for theimometric priapetity at 35

$$
\begin{aligned}
& A \text { and } B \text { for } 1=62.13+\ln (3.5)-25 \cdot 2=54.649 \\
& t=\text { degree N is }
\end{aligned}
$$

Ppesi A mieks temperative scale hi despee in is to le deffined with boiling aird bleezing points on thes scale are $400^{\circ} \mathrm{N}$ and $100^{\circ} \mathrm{N}^{\circ}$ respectively. (a) Correl ate. The with (I) contigrade side
(ii) Foforen-ifit siole
(b) Lhat will be the seading on news scale comppanding to $60^{\circ} \mathrm{C}$.
ss. Centigrode scale Melting point is $0^{\circ} \mathrm{C}$; Boiling prut $100^{\circ} \mathrm{C}$. under A ind pheric P otre.
The relationstup between temperitive \& length s given by

$$
\begin{align*}
& t=a l+b \tag{i}\\
& 0=a l_{1}+b \tag{2}\\
& 100=a / 2+b \tag{3}
\end{align*}
$$

Substracting (3) bom (2), we get; $a=\frac{100}{l_{2}-l_{1}}, b=\frac{-100 l_{1}}{l_{2}-l_{1}}$
$K^{\circ} c^{\prime}=$ ayb is equation(1), $\frac{100\left(l-l_{1}\right)}{l_{2}-l_{1}} \quad \overline{l_{2}-l_{1}} \quad \overline{l_{2}}$ Substituting

Fol gives temperature scale, the boiling and breezing points are $400^{\circ} \mathrm{N}$ and $100^{\circ} \mathrm{N}$ respectively.
we have

$$
\begin{align*}
& t=a l_{1}+b \\
& 100=a l_{1}+b \\
& 400=a l_{2}+b \tag{5}
\end{align*}
$$

By solving the above equation,

$$
a=\frac{300}{l_{2}-l_{1}} ; b=100-\frac{300 l_{1}}{l_{2}-l_{1}}
$$

Now substituting the values of a and b in equation (1), we get

$$
\begin{aligned}
t_{N} & =\frac{300}{l_{2}-l_{1}} l+100-\frac{300 l_{1}}{l_{2}-l_{1}}=\frac{300}{l_{2}-l_{1}}\left(l-l_{1}\right)+100 \\
& =\frac{3\left(\frac{100}{l_{2}-l_{1}}\left(l-l_{1}\right)+100\right.}{l}
\end{aligned}
$$

By substituting $\frac{100}{\left(l_{2}-\mu_{1}\right)}\left(l-l_{1}\right)=t^{\circ} c$:

$$
\therefore t^{0} N=3 t^{\circ} c+100
$$

Pol a Fabrenteit Scale; the boiling and freezing points are $212^{\circ} \mathrm{F}$ and $32^{\circ} \mathrm{F}$ respecievely.
we have $t=a \operatorname{ta}+$

$$
\begin{align*}
& t=a \tag{8}\\
& 32=a l_{1}+b \\
& a+2=a-b b
\end{align*}
$$

$$
a=\frac{180}{l_{2}-l_{1}} \quad b=32-\frac{180 l_{1}}{l_{2}-l_{1}}
$$

Solve the above equation.

$$
\begin{aligned}
& \text { above equation } \\
& \text { til }=\frac{180 l}{l_{2}-l_{1}}+32-\frac{180 l_{1}}{l_{2}-l_{1}}=\frac{180\left(l_{1}-l_{1}\right)}{l_{2}-l_{1}}+32
\end{aligned}
$$

$$
=300\left(t^{\circ} \frac{\mathrm{F}-32}{180}\right)+100
$$

$$
\therefore V^{\circ} N=\frac{5}{3}\left(t^{\circ} F-32\right)+100
$$

(b). The reading on rev scale corresponding to $60^{\circ} \mathrm{C}$ b

$$
t^{e} C=60^{\circ} \mathrm{C}
$$

relationship letracen ' $10 N$ ' and $t^{\circ} \mathrm{C}$ ' is

$$
\begin{aligned}
& \text { lationstrip letracen } t^{\circ} N \text { and }{ }^{\circ} \mathrm{C} \\
& t^{\circ} N=3 t^{\circ} \mathrm{C}+100=3 \times 60+100=280^{\circ} \mathrm{N}
\end{aligned}
$$

\therefore. properties of pafect gages
(i, A perfect gos (or an ideal ges may be defined ana stateof a suibstance, ishoe evapolition flom its liquid state is complete, and strictly obey all the gas laus under all canditiog of temperatere \& pressine.
hatos of perfect gires:-
The physical propaties of a gas are controlled wo the following three variables.
1.) prosfure exctes, by the gos
2) Tempertene
3) Udive occupiced by gas.

Laws: 1) Boyle's Law
2) Charlis Latw
(3) Gay-husic Laks.

Boyles' LaLs:- 'The vatoof aboolute pressive of a given mosts a perfect gas varies enversty asitg absolate volume, then the terpenative. semairs constant.
$p \propto \frac{1}{v}$ (or) $p v=$ constant. (or) $\quad p_{1} v_{1}=p_{2} v_{2}=p_{3} v_{3}=$ constat.
chaile's Lats:- The volume of a given moss of a peffect gas varies diectly asilf absdate temperative lshen absidute presture remate constant.
vגI (v) $\frac{\nu}{T}=$ constant (or) $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\frac{\nu_{3}}{T_{3}}=$ captant
Gay - Lusgoc Lak:- The absolute proffive of a give moes of a peifect gas varies dinectly asits absdute temperature lhan Vdeure rempaisent. $p \alpha ग$ (on) $\frac{p}{T}=$ constant cos $\frac{p_{1}}{\pi}=\frac{p_{2}}{T_{2}}=\frac{p_{3}}{T_{3}}=$ constant
Geveral ges equation:- which obeys Beth Biojles a chorles lats. $p \propto \frac{1}{v}$ (o) $v \alpha \frac{1}{p} \rightarrow$ blan Bogly Lavs
$v \propto T \rightarrow$ blan charites daw.
(6)

$$
\begin{aligned}
& \nu \alpha \frac{T}{p} \text { ors } \cdot \frac{p \nu}{T}=\text { contanit. } \\
& \frac{p_{1} \nu_{1}}{T}=\frac{p_{2} \nu_{2}}{T_{2}}=\frac{p_{3} v_{3}}{\sigma_{3}}=\text { constantiv: }
\end{aligned}
$$

characteristic gas equation:- $p V=m R T$.

* utere $R=$ charciteristic 909. constant. $0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
- Joute's Law:- The change of internal evergy is proporicial to chonge of tempenture $\Delta U \propto \Delta T$

$$
\begin{aligned}
& \text { enotue } \Delta U \propto \Delta T \\
& \therefore \Delta U=2 \cdot \subset\left(T, T_{1}\right)
\end{aligned}
$$

Specific heats:- The amount of heat required to raise the temperature of its unit mass through are degree. solids of liquids have ore specific heat while gases have two speagic hots (CPKCV).
specific heat at constant volume (CV):-
at is the amount of heat rained to raiscte tempentane fa unit mass of gas through one degree latainit is heated at constant volume. $c_{V}, \mathrm{~kJ} / \mathrm{kg} \mathrm{k}$:
Heat supplied at Cartant vdure

$$
\begin{aligned}
& Q_{1-2}=m=3 \times 8 p \text {. heat at constant col } \times \text { Rises } h^{\prime} \\
& =\dot{m}_{2}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

speagic heat at constant pregame (cp):-
at is the amount of heat requivedti" noise the temperature of a unit mos of a gas through one degree. When it $\hat{\theta}$ headed at capstan prose Heat isp plied, $Q=\operatorname{mcp}\left(\frac{B}{2}-T_{1}\right)$.
Entialyy of a Gas, in (t) ; ot is the sum of the internal energy (U) and t product of presence and volume (P U) : Since $(U+P V)$ is made entirely of proputies, Thigfere enthalpy

- Consider a gas enclosed in a container ard being heated at constant pressing flam initial state 1 to full state 2 .
teat supplied at constant progenie:-.

$$
Q 1-2=m C P\left(I_{2}-\pi\right)
$$

Heatutilige fro extend $w_{1-2}=t\left(\partial_{2}-v_{1}\right)$
oncrege is enteral eringo, $d v=m \subset \nu\left(T_{2} \rightarrow \pi\right)$

$$
\begin{aligned}
& \therefore Q_{1-2}=\omega_{1}-2+\Delta U_{1}-2 \\
& m C_{p}\left(T_{2}-T_{1}\right)=m R\left(T_{2}-T_{1}\right)+m C_{\nu}\left(T_{2}-T_{1}\right) \\
& \left(a_{1}\right) C_{1}-R_{R}
\end{aligned}
$$

Non-Flow processes:- The thermodynamic processes which don't involve the mass flow across their boundary ('closed systems).
The commonly used non-flar process are

1) constant-volume process.
2) Constant-pressive process
3) constant - temperature process
4) pobytropic process
5) Adialoatie process. (Isentropic process)

1 Constant volume process Essocholic process):of a gas is confined in a closed cylinder, its volume cant change when heated cos coded.
The tompentwe 84 pressure increges with ted addition. The internal energy of goes increases. charles Lair fo captont velure pros.

$$
\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{2} v_{2}}{T_{2}} \Rightarrow \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

Heat supplied $Q_{1-2}=\left(U_{2}-U_{1}\right)+w_{1-2}=U_{2}-U_{1}=n_{1} q_{1}\left(T_{2}-T_{1}\right)$.
2) Constant pressure' process (Isobaric process):If. heat is supplied to a gas under constant progeny, the volume of the go will increase in direction proposition to the change hi the abode.
 tempertareof the gas:

The sielationshy between pressure, volume and terperatines

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \text { sauce } P_{1}=R_{2} ; \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\frac{V}{T}=\text { cortes. }
$$

wok dare by the of s $\dot{W}_{1-2}=P\left(v_{2}-v_{1}\right)=$ on $R\left(T_{2}-T_{1}\right)$ Heat supplied
3) Constant Temperature pircosi $\begin{aligned} & \left.=m C_{p}\left(T_{2}-T_{1}\right) c_{V}+R\right) \\ & \left.=m c_{1}-c_{1}\right)\end{aligned}$

 with can of a gas is increased on decreased will vary inversely with volume. This is Boyla's law for Constant temperature ge. process.

The process is also called as isothormal (constant temperatine) process.
Boyles law fir a corstant tempentive process is

$$
R_{1} v_{1}=p_{2} v_{2}
$$

The selationstip betruon pressuxe, volure and tempenative is

$$
\frac{P_{1} V_{1}}{\pi_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \text { since } \pi_{1} 2 \sigma_{2} \quad P_{1} v_{1}=R_{2} V_{2}=P V=\text { constant } .
$$

workdone by the gas $w_{1-2}=\int_{v_{1}}^{v_{2}} \cdot g d v=c \int_{v_{1}}^{v_{2}} d v$

$$
=p_{1} v_{1}[\log e v]_{v_{1}}^{v_{2}}=p_{1} v_{1} \log e \frac{v_{2}}{v_{1}}
$$

$$
\text { Heat supplied, } \begin{aligned}
& Q_{1-2}=W_{1-2}+\Delta U \\
&=W_{1-2}=p_{1} V_{1} \log _{c} \frac{V_{2}}{V_{1}} \quad\left[\because \Delta U=m \quad V_{2}\left(\sigma_{2}-T_{1}\right)\right. \\
&\left.=D_{1} ; T_{1}=J_{2}\right] .
\end{aligned}
$$

ADIASATIC. PROCESS: In adiabatic process, the gas changes its condifion bittant the transfen of teat to (a) blom the gumoundings. presfivie, volume and terperative of the gos vary dioring adiabatie process.
"The rietationstip betiveen profsiene, volune es tengeratie P ip is $\quad P_{1} V_{1}^{r}=P_{2} V_{2} r=c$, constant

$$
\begin{aligned}
& =\int_{1}^{2} \frac{c}{v^{\gamma}} \cdot d v=c \int_{1}^{2} \frac{d v}{v^{\gamma}}=\int_{1}^{1} \frac{d v}{v^{\gamma}}=r^{2} c\left[\frac{v^{-r+1}}{-r+1}\right]_{1}^{2}
\end{aligned}
$$

I- $\left(\frac{P_{2} H_{2}-P_{i}}{\gamma-1}\right)$, ire sign denoity worodare onthi $g s e$.
Heat Snpplied $\left(\begin{array}{rl}\gamma & \gamma \text { Heat tranefened, } Q_{1-2}=0(\text { Adiabitud proiers } \\ Q=01.11)\end{array}\right.$ POLYTROPIC PROCESS:
An expansion procass: in whion the everger to "11 do the work, is supplied partly blan an estand
 sevree and pairtly than te oof itself is knam. as polytropic proass thait wrell follous a path usheim Whell fill in between thege of the sothernail and adiabatic proceses.

$$
P V^{n}=c \quad \because \quad P_{1} v_{1}^{n}=-P_{2} V_{2}^{n}=P V^{n}=c .
$$

WiKdore dering poligtropic proces, $W_{1-2}=\frac{P_{2} V_{2}-P_{1} V}{n-1}=\frac{m R\left(T_{2}-T_{1}\right)}{n-1}$

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{n-1}{n}} ; \frac{\tau_{1}}{\tau_{2}}=\left(\frac{v_{2}}{V_{1}}\right)^{n-1} \\
& \text { Hest Trappened, } Q_{1-2}=W_{1-2}+\Delta U_{1-2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n-1}{n-1}\left(T_{1}-1,\left[\frac{1}{21}, \div \frac{1}{r} \cdot 1\right] \stackrel{n-1}{\frac{n}{1}} \times \frac{n R\left(T_{2}-T_{1}\right)}{n-1}\right.
\end{aligned}
$$

Qn osotheermal compression process, \uparrow enargy is trangfered as heat blom the gas to an extermal sink at the same. rate that whk is beling dore on the gas. The intersul enargs is carstant-

compression During an adiabotic eprocis, There is Compaigion of gesentropic, $\overrightarrow{2}$ oithermed \& poltytropic proces. no transfer of heat energy. Hence an amount of energy i^{\prime} equal to the imount of wischoie ion the gas is set up in the gas os on inctreage in the intesmal enargy and terpecitiune of ges incraser.

Free Expansion Eor unrastricted Expasion procesi-
The blee expansion process is an irreverisille non-flar process. A flee expansion occurs when a fluids allored to expand seddenly in to a vaccium chamber through an orifile of large diniensions.

Cansider two chambans Aand B sepasisted by a parfiliow.
of the portion s remoned, the gas will expand bledy and ocapy the, 'tshde space. By thes volure licregst bo v_{2}, pregence de temp decregesby since there in no onparsion of boundary of the sistem, iro work is dove:

$$
\therefore \quad Q_{1-2}=0, w_{1-2}=0 \text { and } d u=0 ; d t=0 \text {. }
$$

2. Constant preserce procoss $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad P\left(V_{2}-V_{1}\right)$ mac $\left(T_{2}-T_{1}\right)$ n $c_{p}\left(T_{2}-i_{1}\right)$ oncp $\left(T_{2}-T_{1}\right.$
3. Cerstant reup ion soathearal $P_{1} v_{1}=P_{2} v_{2} \cdot P_{1} v_{1} \log \frac{V_{2}}{V_{1}} .0 . P_{1} v_{1} \operatorname{loge} \frac{r_{2}}{v_{1}} 0$
4. Adiabate cor osentropic $P_{1} V_{1}{ }^{\gamma}=P_{2} V_{2}{ }^{2}$

$$
\begin{aligned}
& P V^{\gamma}=c \quad \frac{I_{1}}{T_{2}}=\left(\frac{v_{2}}{V_{1}}\right)^{r-1} \frac{R_{2} V_{2}-R_{1} V_{1}}{r-1} \operatorname{mov}\left(R_{2}-\pi\right) \quad 0 \\
& =\left(\frac{r_{1}}{p_{2}}\right)^{\frac{r-1}{r}}
\end{aligned}
$$

5. polytropic process. $p r^{n}=c$

$$
\left.P_{1} v_{1}^{n}=P_{2 v_{2}} \frac{r_{1}}{P_{2}}\right)^{\frac{r-1}{r}} \quad \frac{B_{2} v_{2}-P_{1} v_{1}}{n-1} \text { ancr }\left(R_{2}-T_{1}\right) \frac{r-n}{r-1} \mathrm{~mW}
$$

matrois

PPROB. A certain gas occupies a space of $0.3 \mathrm{~m}^{3}$ at a pressure of 2 bar and a temperateve of $77^{\circ} \mathrm{C}$ - at is heated at constant volume, until the pressures 7 bav. Determine ' D remperatume at end of the process 2) mass 8 gas 3) change in internal energy 4) charge in enthalpy during the process. Assume $C \gamma=1.005 \mathrm{~kJ} / \mathrm{kgK}, \quad C_{V}=0.712 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$
58

$$
\begin{aligned}
& v_{1}=0.3 \mathrm{~m}^{3}, p_{1}=2 \text { boas }=2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \pi /=77^{\circ} \mathrm{C}=7+273=350 \mathrm{~K} . \\
& p_{2}=7 \text { bar }=7 \times 10^{5}, \mathrm{~N} / \mathrm{moN}, q_{\mathrm{c}}=0.712 \mathrm{~kJ} / \mathrm{kg}, R=287 \mathrm{~J} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

1) Fempenatere at the end of the process, T_{2}
we know that, $\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}$

$$
\begin{aligned}
& \text { or that, } \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
& \therefore T_{2}=\frac{p_{2}}{p_{1}} \times T=\frac{7 \times 10^{5}}{2 \times 10^{5}} \times 350=1225 \mathrm{~K}=1225-273=952^{\circ} \mathrm{C}
\end{aligned}
$$

2) Mass of the gas,

Let $m=$ mass of the gas

$$
\begin{aligned}
& \text { So the gas, } \\
& \text { Let min mass of the gas } \\
& \text { we knows that, } p_{1} v_{1}=m R T_{1} ; m=\frac{p_{1} v_{1}}{k_{1}}=\frac{2 \times 10^{5} \times 0.3}{287 \times 350}=0.597 \mathrm{~kg} \text {. }
\end{aligned}
$$

3) change is internal evergis:-
4) Change in entarify, $d H=H_{2}-H_{1}=\sin C_{p}\left(T_{2}-7\right)$

$$
\begin{aligned}
& =H_{2}-H_{1}=\sin C_{p}\left(T_{2}-7\right) \\
& =0.597 \times 1.005(1225-300)=525 \mathrm{~kJ} .
\end{aligned}
$$

[PRBB A closed system undergoes a reversible process at a constant during the process. Determine the change in intesisil energy of the system.
SoL. pressanc, $p=3.5 \mathrm{baw}=3.5 \times 10^{5} \mathrm{~N} / \mathrm{ro}^{2}$

$$
\begin{aligned}
& p=3.5 \mathrm{bar}=3.5 \times 10 \\
& V_{1}=0.15 \mathrm{~m}^{3}, v_{2}=0.06 \mathrm{~m}^{3}
\end{aligned}
$$

peat rejected by systany $\cdot Q=-25 \mathrm{KJ}(-v \mathrm{C})$

$$
\begin{aligned}
& =p\left(\cdot v_{2}-v_{1}\right)=3.5 \times 10^{5}(0.06-31.5 \mathrm{~kJ} \text { (vies) workdorenthe stem. } \\
& =-31,500 \mathrm{~J}=-31
\end{aligned}
$$ sifter.

ACcording to First laws of thermodynamics.

$$
\begin{aligned}
& \text { Adding to First he } \\
& Q=\Delta U+W \\
& -25=\Delta U+(-31.5) \quad \Rightarrow \Delta U=31.5 .-25=6.5 \mathrm{~kJ}
\end{aligned}
$$

PPOB A quantity of air has a volume of $0.4 \mathrm{~m}^{3}$ at a pressure of ${ }^{2} 5$ bar and a temperature of $80^{\circ} \mathrm{C}$. at is expanded in a cylinder at a constant temperature to a presecue of 1 bor. Determine the amount of workdore by the air during expansion.
[SOL Given, $v_{1}=0.4 \mathrm{r}^{3}, \quad t_{1}=5$ bar $=5 \times 10^{5} \mathrm{~N} / 7 n^{2}, T_{1}=80^{\circ} \mathrm{C}=80+273=$

$$
p_{2}=1 \text { bar }=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

wolkdore by the air during (expandial)

$$
\begin{aligned}
& \text { dove by the air during expendial } \\
& \begin{aligned}
W_{1}-2 & =P_{1} v_{1} \ln \frac{v_{2}}{v_{1}}=P_{1} v_{1} \ln \frac{P_{1}}{P_{2}}=5 \times 10^{5} \times 0.4 \ln \frac{5}{1} \\
& =3.218 \times 10^{5} J=321.8 \mathrm{~kJ}
\end{aligned} \quad \text { (whildone by system is +we) }
\end{aligned}
$$

PRess. $0.1 \mathrm{~m}^{3}$ is all at a pressure of 1.5 bar is expanded isothermally to $0.5 \mathrm{~m}^{3}$. Calculate the find pressure of the gas and heat supplied during the process.
SO. Given, $\nu_{1}=0.1 \mathrm{~m}^{3}, \varphi_{1}=1.5 \mathrm{bar}=1.5 \times 105 \mathrm{~N} / \mathrm{m}^{2}, v_{2}=0.5 \mathrm{~m}^{3}$.
Final pressing of the $\mathrm{g}-\mathrm{s}$,
: We knar that, $\quad D_{1} v_{1}=p_{2} \nu_{2}$

$$
p_{2}=\frac{p_{1} \nu_{1}}{v_{2}}=\frac{1.5 \times 10^{5} \times 0.1}{0.5}=0.3 \times 10^{5} \mathrm{~N} / 2^{2}=0.3 \mathrm{bar}
$$

Workdone by the sostemve $W_{1-2}=p_{1} v_{1} \ln \frac{r_{2}}{v_{1}}=p_{1} v_{1} \ln \frac{p_{1}}{\beta_{2}}$

$$
\begin{aligned}
& \begin{array}{l}
=1.5 \times 10^{5} \times 0.1 \ln \left(\frac{1-5}{0.3}\right)=24,115 \mathrm{~J} \\
=24.115 \mathrm{k7}
\end{array} \\
& =24.115 \mathrm{~kJ} \quad a 0=0 \text {, incl } \pi_{125} \\
& \text { Heat supplied, } \begin{aligned}
a=\Delta u+W & =0+24 \cdot 115 \\
& =24 \cdot 115 \cdot \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

[PROB. A System contains $0.15 \mathrm{~m}^{3}$ of a $g 99$ at a pressured $3-8$ boar and $150^{\circ} \mathrm{C}$. of is expanded adiabatically till the prose fill to 1 bor. The gas is then heated at a constant pregame till its enthalpy increases bo 70 kJ . Determine the total whisk dare. Take, $C_{p=1} 1 \mathrm{~kJ} / \mathrm{kgK}, \quad C l v_{2}=0.714 \mathrm{~kJ} / \mathrm{kgK}$.

For an Adiabatte process $1-2, p, V_{1} T$ relation are

$$
\begin{aligned}
& p_{1} v_{1}^{\gamma}=p_{2} v_{2}^{\gamma} \text { coo } \frac{v_{1}}{v_{2}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\gamma}} \\
& \frac{T_{2}}{\tau_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
& \therefore \text { Final volume, } v_{2}=v_{1} /\left(\frac{p_{2}}{p_{1}}\right)^{1 / \gamma} \\
&=0.15 /\left(\frac{1}{3.8}\right)^{\gamma / 4} \\
&=0.39 \mathrm{~m}^{2}
\end{aligned}
$$

Given
SOL. Adiabatic index, $r=\frac{C_{p}}{C_{2}}=\frac{1}{0.714}=1-4$.

$$
\begin{aligned}
& \nu_{1}=0.15 \mathrm{~m}^{3} \\
& p_{1}=3.8 \text { bor }=3.8 \times 10^{5} / \mathrm{N}^{\mathrm{N}} \\
& T_{1}=150^{\circ} \mathrm{C}+273=423 \mathrm{~K} \\
& \begin{array}{c}
P_{2}=1602^{2} \text { entt-lper) } \\
\Delta H=+10 \mathrm{~kJ} \text { (2ncrode) }
\end{array} \\
& \Delta H=+-10 \mathrm{~kJ}(\text { encregle })
\end{aligned}
$$

Gas constant, $R=C_{p}-C_{V}=1-0.714=0.286 \mathrm{~kJ} / \mathrm{kgk}$.
Fempratiue at state 2, $\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{\Gamma_{1}}\right)^{\frac{r-1}{r}} ; T_{2}=T_{1}\left(\frac{p_{2}}{p_{2}}\right)^{\frac{r-1}{r}}$

$$
\Rightarrow T_{2}=423\left(\frac{1}{3.8}\right) \frac{1.4 .1}{1.4}=288.7 \mathrm{~K}
$$

mags of the gas,

$$
\begin{aligned}
& P_{1} v_{1}=m_{1} R T_{1} \\
& m=\frac{P_{1} \nu_{1}}{R T}=0.38 \times 10^{6} \times 0.15 \\
& 286 \times 423
\end{aligned}=0.47 \mathrm{~kg}
$$

Increase in en tally during to constant pressure process 2-3,

$$
\begin{aligned}
& d H=m C_{p}\left(T_{3}-T_{2}\right) \\
& \tau_{0}=0.47 \times 1\left(T_{3}-288-7\right) ; T_{3}=\frac{70}{0.47}+288-7=437.6 \mathrm{~K} .
\end{aligned}
$$

since the heating is at constant pressure, therefore,

$$
\begin{aligned}
& \frac{p_{2} v_{2}}{T_{2}}=\frac{P_{3} v_{3}}{T_{3}} \Rightarrow \frac{v_{2}}{T_{2}}=\frac{v_{3}}{T_{3}} \text { since } p_{2}=p_{3} \text {. } \\
& v_{3}=\frac{v_{2} T_{3}}{T_{2}}=\frac{0.39 \times 437.6}{288-7}=0.59 \mathrm{~m}^{3} \text { adiabatic expansion, }
\end{aligned}
$$

wokdone during adiabatic expansion,

$$
\begin{aligned}
& \text { done during adiabatic expansion, } \\
& \begin{aligned}
& w_{1-2}=\frac{p_{1} v_{1}-p_{2} v_{2}}{r-1}=\frac{45 \mathrm{~kJ}}{1.4-1} \\
&=451000 J=0.15-1 \times 10^{5} \times 0.39 \\
&
\end{aligned}
\end{aligned}
$$

Workdore during constant pressure heating,

$$
\begin{aligned}
& =451000 \mathrm{~J}=4 \mathrm{~J} \\
& \text { wring constant proscue heating, } 1 \times 105(0.59-0.39) \\
& W_{2}-3=p_{2}\left(\mathrm{~J}_{3}-v_{2}\right)= \\
& =201000 \mathrm{~J}=20 \mathrm{~kJ} .
\end{aligned}
$$

Total W irk doe, $W=W_{1-2}+W_{2-3}=45+20=65$ KI.
EROB. A gas mixture obeying pofece ing through a compression ratio of 26.7. The gas mixture is compressed 10 pom initial conditions of 12 according to the lats. 12 mean mod specific heat at 0.9 bar and 333 K . Assuring a pen Kg of moss, the wolledare and constant volume of $21.1 \mathrm{~kg} / \mathrm{kg}$. find
heat flow across the cylinder the valued charmetenific gas constant, For the dove gas, determine presfive and rate of specific heir. molar specific heat at a casio $\quad M=26-7$
sot. Given, Molecular mos, $M=26-7$
Compression rato, $s=\frac{\nu_{1}}{\nu_{2}}=12$
snitlal pressing, $P_{1}=0.9$ bar $=0.9 \times 10^{5} \mathrm{Ntor}$ mitral Temperature, $\sigma_{1}=333 \mathrm{~K}$

First find $v_{2} p_{2}$;

$$
\begin{aligned}
& \text { ow in at } p_{1} v_{1}^{n}=p_{2} v_{2} \\
& P_{2}=P_{1}\left(\frac{v_{1}}{v_{2}}\right)^{n}=0.9(12.25
\end{aligned}
$$

ourker
characteristic gis constant, $R=\frac{\text { universel gos constent }}{\text { Mdealaw height }}$

$$
\frac{8314}{26.5}=311.4 \mathrm{~J} / \mathrm{kg} \mathrm{k}
$$

and $P_{1} \nu_{1}=m R T_{1}$

$$
v_{1}=\frac{m R T_{1}}{p_{1}}=\frac{1 \times 311.4 \times 333}{0.9 \times 105}=1.15 \mathrm{~m}^{3}
$$

$v_{2}=\frac{v_{1}}{12}=\frac{1.15}{12}=0.096 \mathrm{~m}^{3} \quad$ \&ince moss of $\mathrm{gg}=1 \mathrm{~kg}$, given $]$.
Wrikelase Wric supplied during comprestion,

$$
\begin{aligned}
W_{1-2} & =\frac{p_{22} v_{2}-t_{121}}{x_{1-1}}=\frac{20.1 \times 10^{5} \times 0.096-0.9 \times 10^{5} \times 1.15}{1.25-1} \\
& =357840 \mathrm{~J} \text { coo } 357.84 \mathrm{~kJ}
\end{aligned}
$$

Heat flow acress cughinder well:

$$
\begin{aligned}
& \frac{D_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n-1} \\
& J_{2}=T_{1} \cdot\left(\frac{v_{1}}{v_{2}}\right)^{n-1}=333\left(\frac{1.15}{0.096}\right)^{1.25-1}=620 \mathrm{~K}
\end{aligned}
$$

Efecific hed at castant volune, $\tau_{2}=\frac{C_{\nu m}}{M}=\frac{2 / 1 /}{26-7}=0.79 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
Change in internal evergs, $d U=\left(b_{2}-U_{1}=m c_{v}\left(T_{2}-11\right)=1 \times 0-79(620-333)\right.$

$$
=226.7 \mathrm{Hy} .
$$

Hect flas, $Q=\Delta u+W=226.7+(-357.84) \quad \sum \because W$ - - we, wolke aci-p8 cylinder Whlts, $\quad=-131.1 \mathrm{~kJ}$ Heat reicied

$$
-c_{p}-C_{\nu}=R: \quad p_{p}-0.79=0.3114 ; c_{p}=1.1014 \mathrm{~kg} / \mathrm{kk} .
$$

Mean specific thet at castatpogsme, $\dot{P}_{m}=M C P=26-7 \times 1014=29-4 \mathrm{~kJ} \mid \mathrm{kg} \mathrm{K}$.
Ratio of specife tedy, $\gamma=\frac{c y}{c \nu}=\frac{1.1014}{0.79}=1.394$

PROB A cylinder contains $0.115 \mathrm{~m}^{3}$ of gas at 1 bar and $90^{\circ} \mathrm{C}$.
The gas is compressed to a volume $0.0288 \mathrm{~m}^{3}$. The final pressure being 5.67 bar. Calculate
(a) moss of the gs
(D) value of index of carpreession
(2) increase in internal energy (d) Heat transfer during cornveresian.
of athene after compression, the gas is to be cooled at constant pressure to its original temperature of $90^{\circ} \mathrm{C}$, find the work of compression required. Assume $\gamma=1.4$ \& $R=0.3 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.

SOL Given,

$$
\begin{aligned}
& V_{1}=0.115 \mathrm{~m}^{3} \\
& P_{1}=1 \mathrm{bar} \\
& T_{1}=90+273=363 \mathrm{~K} \\
& V_{2}=0.0288 \mathrm{~m}^{3} \\
& P_{2}=5.67 \mathrm{bar} \\
& r=1.4 ; R=0.3 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

$$
\longrightarrow \text { volume }
$$

(a) mass of the gas:- $R \nu_{1}=m R T_{1} ; m=\frac{p_{2} \nu_{1}}{R \pi}$

$$
\begin{aligned}
R \nu_{1}=m R T_{1} ; m & =\frac{p_{1} \nu_{1}}{R T} \\
& =\frac{1 \times 105 \times 0.115}{(0.3 \times 1000) \times 367} \\
\text { Compresion:- } \quad & =0.1056 \mathrm{kgs}
\end{aligned}
$$

(b) value of index of compresion:-

$$
\begin{aligned}
& P_{1} v_{1}^{n}=p_{2} v_{2}^{n}\left(P_{2} / p_{1}\right) \\
& \therefore n=\frac{\log _{e}\left(\frac{5 \cdot 67}{1}\right)}{\log e(\nu / w)}=1-253 .
\end{aligned}
$$

(C) oncreage in intanal energy:-

$$
\frac{\text { oncreage in intanal energy. }}{\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{V_{2}}\right)^{n-1} ; T_{2}=T_{1}\left(\frac{v_{1}}{V_{2}}\right)^{n-1}=363\left(\frac{0.115}{0.0288}\right)^{1.253-1}=515.17 \mathrm{~K} .}
$$

$$
\begin{aligned}
\Delta U=\text { chang in intend energy } & =m a v\left(\sigma_{2}-\pi\right)=m\left(\frac{p}{r-1}\right)\left(T_{2}-\pi\right) \\
& =0.1056 \times \frac{0.30}{1.4-1}(515.17-363)
\end{aligned}
$$

(d) Heat Transfer

$$
\begin{aligned}
& =0.1056 \times \frac{0.30}{1.4-1}(515.17-363) \\
& =12.05 \mathrm{~kJ}
\end{aligned}
$$

$$
=12.05 \mathrm{~kg}
$$

(e) After compression, it resined to cod gas to original temp of $90^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Aster compression, } \\
& \frac{P_{3} V_{3}}{T_{3}}=\frac{p_{2} V_{2}}{T_{2}} ; \frac{P_{3}=R_{2} ;}{} ; V_{3}=V_{2} \times \frac{T_{3}}{T_{2}}=\frac{363}{51517} \times 0.0288=0.0202 \mathrm{x}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Additions work rearmed, } \begin{aligned}
& =P_{2}\left(v_{3}-v_{2}\right)=5.67 \times 10(0.0202-0.0288) \\
& =-4.87 \mathrm{~kJ}
\end{aligned} .
\end{aligned}
$$

$$
=4-87 \mathrm{~kJ} \div
$$

$$
\begin{aligned}
& Q=\Delta U+W ; \quad W=\frac{\frac{P}{2} v_{2}-P_{1} v_{1}}{n-1}=\frac{(-67 \times 0.0288-1 \times 0.15) 1 \delta^{5}}{1.253-1} \\
& \therefore Q=\Delta U+W \\
& =12.05-19.05=-7 \mathrm{~kJ}
\end{aligned}
$$

$*$
Application of First lar of Thermodynamics to a steady flarprocasis.
A plow process constitutes an open systern, in which the whisking substance esters and leaves the control surface of a system. Energy interaction in the formof heat and wire may a lo take plate with lin the system.
plow every (or) flor work refers to work sequined to pugh a certain mass of fluid into and at sf the canted volume.
In a steady floss process, the following canditias must be stiffed.
(a) The rate of mass flor at inlet and outlet is same.
(b) The rate of heat transfer is constant
(c) The rote of work transfer is constant.
(d) State of the wriking substance at any point with in the system is same at all points.
(e) There is no change in the chancical composition of the system: If any ore st these conditions are not satisfied, Then the process's said to be non-steady flor process. on engineering mainly concerned with steady flow prose.
Steady flow Energy Balance anton:
Consider on open system through which the working substance flows at a steady rate os sham Z_{1} in figure. The working substance enter the system at section (1) and lealles the system at section (2):
Let $p_{1}=$ pressure of the working substance entering the system, N/2K
$v_{s_{1}}=$ specific volume of the substance entering the system, $\mathrm{m}^{3} / \mathrm{kg}$.
$V_{1}=$ velocity of the working substance entering the system, $\mathrm{m} / \mathrm{sec}$.
$u_{1}=$ specific internal every of the. Wishing substance entering the system in J/ Kg.
$z_{1}=$ Height above dater level for inlet in metes. similarly $P_{2}, v_{s_{2}}, V_{2}, u_{2}$ \&t z_{2} are corresponding values for T_{e} working substance lealling the syptam.
Let $q_{1-2}=$ Heat supplied to the system olin $w_{1-2}=$ work delivered by the system $-f / \mathrm{kg}$.

The total energy of ${ }^{\text {. }}$, entering The system per kg of working substance.

$$
\begin{aligned}
e_{1} & =\text { internal energy }+p l_{0} \text { work }+ \text { Kinetic energy }+ \text { potential } \\
& =2_{1}+p_{1} v_{s_{1}}+\frac{v_{1} 2}{2}+g_{21}+q_{1-2} \quad \text { energy }+ \text { Heat supplied } .
\end{aligned}
$$

Similary, Total energy leaving the system per kg of wooing substance

$$
e_{2}=u_{2}+P_{2} v_{3_{2}}+\frac{v_{2} v}{2}+g_{22}+w_{1}-2
$$

Assuming no lass of energy deriving flaw, Acceding to First laws of Thermodynamics, $e_{1}=e_{2}$

$$
\begin{aligned}
& \text { Thermodynamics, } e_{1}=e_{2} \\
& u_{1}+p_{1} v_{s}+\frac{v_{1}^{2}}{2}+g z_{1}+q_{1-2}=u_{2}+p_{2} v_{s_{2}}+\frac{v_{2}^{2}}{2}+g z_{2}+w_{1-2} \\
& \therefore \quad \sin \left(h_{1}+\frac{v_{1}^{2}}{2}+2 g+g_{1}-2\right)=m\left(h_{2}+\frac{v_{2}^{2}}{2}+g z_{2}+w_{1-2}\right)
\end{aligned}
$$

This is known as steady flow energy, equation (SFEE).
Note:- on steady flor, mass flow rate is constant entering r leaving the
(1)

$$
m=\frac{A_{1} V_{1}}{v_{s}}=\frac{A_{2} V_{2}}{V s_{2}}
$$

(2) of K.E \& P-Eare neglected, SPEEG; $q_{1-2}-w_{1-2}=h_{2}-h_{1}$
(3) SFEE maybe written os,
(1) BOILER:- A boiler is a device which supplies heat to water and generates steam. on thy systems, there sins. change in Kinetic and potential energies and also their si no wikdare by the system. KE.\& P.EMCWKKdore is zero. The sferequation,
$h_{\left.2-h_{1}\right)} 9_{1-2}-W_{1-2}=\left(h_{2}-h_{1}\right)+\left(\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}\right)+(22 g-21 g)$
$\therefore g_{1-2}=h_{2}-h_{1}$ This shows that teat the enthral boiler increase
a, lit applied the enthalpy of the system.
(2) STEAM TURBINE:-

On steam turbine, steam is paged throwing the turbine and part of 淔 energy \hat{s}. converted into work. in the turbos
The steam leaves the turbine at lower pressure tan tempentue.

$$
q_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)
$$

Here, $q_{1-2}=0$, if turbine is insulated, $=-$ re, if turbine not insulated.

A staedy-blas process can be defined as a prows during which all protentites of fluid at each location with in the syitern remain constant wits roget to tevere. That is, the flied propatier con change flow polar to point with is the consol volume but at any fixed location they remain the same during the coniine process. steady fiomens no change with timeConditions for steady-Ular prows:

1. The fluid perfentic (intensive (oo Extrusive) with es the card where strain constant of each location wilt respect to time.
2. The pospectis of the flied crossing the boundary (inlet and outlet) remain constant at each point of the bandary.
3. The Mas -blow the in to the system is always equal to the grass blow rate at of te system
4. Hes and work interactions with in the surroundings occorat a steady rate.
(3) ROTARY COMPRESSOR:-

A rotary compressor is a machitive which compresses air (or gas and supplies the same at moderate pressure in large quantity.

- on corppresor, $z_{1}=z_{2}$, and heat rejected flam system so, $\quad a r_{1-2}=-v e$
W_{i-2} wot supplied to the sister, we.

$$
\begin{aligned}
& q_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}}{2}-\frac{v_{1}^{2}}{2} \\
\therefore & -q_{1-2}-\left(-w_{1-2}\right)=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}
\end{aligned}
$$

(4) CONDENSER:-

A conderger is a device used to conderge steam is case of steam poler plants using water os the
 systems, it is used AD cooling medium. For such a systems, vapour using air as K.E and P.E. Ales, There is no work done by Vapour using air in K.E and P.E -Also, There is no the systems.

$$
\begin{aligned}
& -9 q_{1-2}=h_{2}-h_{1} \\
& -q_{1}-2=h_{2}-h_{1} \text { (or) } \hat{r}_{1}-2=h_{1}-h_{2} \\
& \text { evaporator } \hat{s} \text { a device used in red }
\end{aligned}
$$

$$
\therefore-q_{1-2}=h_{2}-h_{1}
$$

(5) EVAPORATOR:- EVap\&ato is a device used in redbigenetionsytinsin which liquid refrigerant passes, receives heat and leaves os Vapour refligenast. For suction system, K-ERP-E, Wakdone is zero.

$$
\begin{aligned}
& \text { vapour retugens } \\
& \text { os }_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+\gamma\left(2-a_{1}\right) \\
& \therefore h_{1-2}=h_{2}-h_{1}
\end{aligned}
$$

(6) NOZZLE:- A nozale is a device. which increase the velocity of the
working substance at the didpluge of it preserve drop. The nozzle is insulated, so that no tronola of teat blow the system, Fur her, the system does not deliver any work
 There is no change in P.E

$$
\begin{aligned}
& \text { mo change in } P \cdot E \\
& q_{1-2}-W_{1-2}=\left(h_{2}-h_{1}\right)+\frac{V_{2}^{2}-v_{1}^{2}}{2}+g\left(22-2_{1}\right) . \\
& 0=\left(h_{2}-h_{1}\right)+\frac{V_{2}^{2}-v_{1}^{2}}{2}: v_{2} \cdot \sqrt{v_{1}^{2}+2\left(h_{1}-h_{2}\right)}
\end{aligned}
$$

If Initial velocity, $V_{1} \hat{s}$ roglected
velocity of steam at exit, $v_{2}=\sqrt{2\left(h_{1}-h_{2}\right)}$
PPROB. A gas turbine receives gas at an enthalpy of $800 \mathrm{kf} / \mathrm{lg}$ and a velocity of $100 \mathrm{~cm} / \mathrm{sec}$. The gas teals the turbine at an enthalpy of $380 \mathrm{~kJ} / \mathrm{kg}$ and a velocity of $150 \mathrm{~m} / \mathrm{sec}$. Heat loft to surrandings from the gas is $36 \mathrm{~kJ} / \mathrm{sec}$. If the rate of $g s$ flow is $10 \mathrm{kgs} / \mathrm{sec}$, Find the poller developed by the turbine.
Sol. Gilow, Enthalpy at inlet of turbine, $h_{1}=800 \mathrm{~kJ} / \mathrm{kg}$
velocitygitiet, $V_{1}=100 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& V_{1}=100 \mathrm{~m} / \mathrm{sec} \\
& h_{2}=380 \mathrm{~kJ} / \mathrm{k}, V_{2}=150 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

Heat rejected, $Q_{1 \rightarrow 20}-36 \mathrm{~kJ} / \mathrm{sec}$.
ais rate of gas flow, $m^{3}=10 \mathrm{~kg} / \mathrm{sec}$.
STE :
$a_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+g(2-21)$

$$
\begin{aligned}
& a_{1-2}-W_{1-2}=\left(Q_{1-2}-\frac{W_{1-2}}{m}=\left(h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+0\right. \\
& \frac{-36 \times 10^{3}}{10}-\frac{W_{1-2}}{10}=\left(300 \times 10^{3}-800 \times 10^{2}\right)+\frac{150^{2}-100^{2}}{2} \\
& \therefore \quad-\frac{36 \times 10^{3}-W_{1-2}}{10}=\left(-420 \times 10^{3}+6250\right)=(-413,750) \\
& \therefore \quad W_{1-2}=4-101500 \times 7 / \mathrm{sec} \\
& \therefore 410) \mathrm{kW}
\end{aligned}
$$

Fppses. A nozzle receives $1200 \mathrm{~kg} / \mathrm{hr}$ of steam at $\mathrm{ts} \mathrm{MN} / \mathrm{rr}^{2}$, specific valera $v_{s 1}$: 142 litres 1 kg , internal energy $4400 \mathrm{~kg} / \mathrm{vg}$ and negligitsle speed. At exit, the pressure $b 100 \mathrm{kN} / \mathrm{m}^{2}$, specific volume 1660 litres $/ \mathrm{kg}$ and internal energy $2200 \mathrm{~kJ} / \mathrm{kg}$. Calculate the exit velocity of steam.
Sse. Given, mass δ_{5} steam $m=1200 \mathrm{~kg} / \mathrm{hr}$, onset. progesune at inlet, $p_{1}=1.3 \mathrm{MN} /$ no $^{2} 1.3 \times 10^{6(1)}$
specific Vdimeat in bt, $V s_{1}=14-2$ dip at kg

similarly,

$$
\begin{gathered}
p_{2}=100 \times 10^{3} \mathrm{~N} / \mathrm{mi}^{2} \\
v_{s_{2}}=1660 \mathrm{lu} / \mathrm{kg} \quad 1.66 \mathrm{~m}^{3} / \mathrm{kg} \\
u_{2}=2,200 \mathrm{kf} / \mathrm{kg} \\
\vdots .
\end{gathered}
$$

ne SPEE, $91_{1-2}^{0}-h_{1} /_{-2}^{\circ}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-y_{1}^{2}}{2}+2\left(22-h_{1}\right)^{0}$ 29

$$
\begin{gathered}
0=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}}{2} ; \quad \begin{array}{l}
i=0, w=0 \\
v_{1}=0 ; v_{1}=22
\end{array} \\
h_{1}=v_{1}+p_{1} v_{s_{1}}=4400 \times 10^{3}+1.3 \times 10^{6} \times 0.142=4584600 \\
h_{2}=h_{2}+h_{2}+P_{2} v_{s_{2}}=2200 \times 10^{3}+100 \times 10^{3} \times 1.66=2366000 \mathrm{~J} / \mathrm{kg} . \\
\therefore v_{2}= \\
2\left(h_{1}-h_{2}\right)=\sqrt{2(4584600-2366000)}= \\
=2.106 \mathrm{~m} / \mathrm{sce} .
\end{gathered}
$$

AReas A blower handles $1 \mathrm{kss} / \mathrm{sec}$ of ar at $20^{\circ} \mathrm{C}$ and consumer of
15 kW - its inlet and outlet velocities of air $100 \mathrm{~m} / \mathrm{sec}$ and $150 \mathrm{~m} / \mathrm{sec}$ respectively. Find the exit air tempanatire. Given.
Soc. moss of air $=1 \mathrm{ksi} / \mathrm{kc}$. Assume adicloctic conduces ($Q=0$)

$$
\text { inlet temperature of abs, } T_{1}=20^{\circ} \mathrm{C}, V_{1}=100 \mathrm{~m} / \mathrm{sec}, V_{2}=150 \mathrm{~m} / \mathrm{sec}
$$

\Rightarrow The SFEE

$$
\begin{aligned}
& \text { te SFEE } \\
& q_{1} T_{2}^{D}-W_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+g\left(2_{2}-v_{1}\right)^{0} \\
& \text {-TANS Q } \left.\text { TO }^{0} \quad W_{1-2}-h_{1}-h_{1}\right)+v_{2}^{2}-v_{i}
\end{aligned}
$$

$$
\text { TONS } \frac{Q^{2}-2}{m}-\frac{W_{1-2}}{m}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}
$$

$$
-\frac{(-15) \times 10^{3}}{1}=\left(h_{2}-h_{1}\right)+\frac{150^{2}-100^{\circ}}{2}
$$

$$
\therefore\left(h_{2}-\mu_{1}\right)=15000-6250=8750 \text { Jo ks. }
$$

$$
8750^{\circ}=m C\left[\sigma_{2}-1\right]=1 \times 1.005 \times(x[12-293)
$$

\therefore Exit air tompustone, $\sigma_{2}=301.706 \mathrm{~K}$ (o or 28.7 $7^{\circ} \mathrm{C}$
PPROR A steady: flow apparatus $140 \mathrm{k} \%$ of work is donn by each $k g$ of thud. The speciflicivolume of fluid, prague and vabcity at the inlet are $0.37 \mathrm{~m}^{3} / \mathrm{zt}, 600 \mathrm{kPa}$ and $16 \mathrm{~m} / \mathrm{sec}$. The inlets 32 mm above floss and the discharge pipe is at the flask level.
The discharge conditions are $0.62 \mathrm{mn}^{3} / \mathrm{kg} / 100 \mathrm{kpa}$ and $300 \mathrm{~m} / \mathrm{sa}$.
The total heat los between inlet and discharge is $9 \mathrm{~kJ} / \mathrm{ky}$ of fluid. Find loretta specific interne energy incorese (a so decease.
Sol. wive dore by fluid, $W=140 \mathrm{kF}$ (+we)

$$
V 81=0.37 \mathrm{~m}^{3} / \mathrm{k}
$$

$$
p_{1}=600 \mathrm{kPa}
$$

$$
z_{1}=32 \mathrm{~m}
$$

$$
z_{2}=0
$$

$$
\begin{aligned}
& v_{s_{2}}=0.62 \mathrm{~m}^{3} / \mathrm{kg} \\
& P_{2}=100 \mathrm{kPa} \\
& V_{2}=300 \mathrm{~m} / \mathrm{sec} \\
& Q=+r_{\text {ald }} \mathrm{kr}(\mathrm{los} \\
& =9 \mathrm{~kJ} / \mathrm{kg}(-\mathrm{icc})
\end{aligned}
$$

$$
v_{1}=16 \mathrm{~m} / \mathrm{sec} \quad Q=+2 t a l \text { thor } \operatorname{los} s
$$

We have SEE,

$$
\begin{aligned}
& q_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+g\left(2-2_{1}\right) \\
& \frac{Q_{1-2}}{m}-\frac{W_{1-2}}{m}=\left(h_{2}-h_{1}\right)+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g(22-21) \\
& -\frac{9 \times 10^{3}}{1}-\frac{\left(140 \times 10^{3}\right)}{1}=\left(h_{2}-h_{1}\right)+\frac{300^{2}-16^{2}}{2}+9.81[0-32] \\
& \therefore\left(h_{2}-h_{1}\right)=1.104441 .92 \text { Jones. } \\
& \left(q_{2}+p_{2} v_{s_{2}}-\left(u_{1}+p_{1} v_{s_{1}}\right)\right)=10444 \% \% \\
& \therefore\left(u_{2}-u_{1}\right)=104441.9-p_{2} v_{v_{2}}+p_{1} v_{3_{1}} \\
& =104441.92100 \times 10^{3} \times 0.62+600 \times 10^{3} \times 0.37 \\
& \therefore \underline{u_{2}-u_{1}}=264,441.7 \text { (on } 264.4 \mathrm{~kJ} \text { (lincrage) }
\end{aligned}
$$

PPREB. Steam enter a steams conderges with an enthalpy of reagoks/ly and velocity of $510 \mathrm{~m} / \mathrm{sec}$. The condensate lealles the condenses with an enthalpy of $209 \mathrm{~kJ} / \mathrm{kg}$ and with a velocity $\& 10 \mathrm{~m} / \mathrm{sec}$. determine the heat received by cooling water per $k g$ of stem condensed.
Sol. Given, $h_{1}=20 q 0 \mathrm{~kJ} / \mathrm{kg}$ The SFEE;

$$
\begin{aligned}
& V_{2}=10 \mathrm{~m} / \mathrm{sec} \quad \therefore q_{1-2}=(209-2090)+\frac{10^{2}-510^{2}}{2}
\end{aligned}
$$

\therefore Heat rejected flow steaine $=-2011 \mathrm{~kJ} / \mathrm{ks}$
TPROB A gas texting the turbine jet engine flows stead sly into The jet pipe with an enithalfy $960 \mathrm{~kg} / \mathrm{kg}$ and velocity $250 \mathrm{~m} / \mathrm{sec}$. The exit blow the pipe is at owthalpy $860 \mathrm{~kg} / \mathrm{kg}$ and exhaust is inline with intake. Neglect heat lifer boom the system; detersinine the velocity of the gas leaving the pipe.
Sol: Givens

$$
\begin{aligned}
& h_{1}=960 \mathrm{~kJ} / \mathrm{kg} \\
& v_{1}=250 \mathrm{~m} / . \mathrm{sec} . \\
& h_{2}=860 \mathrm{~kJ} / \mathrm{kg} \\
& v_{2}=\text { ? } \\
& \text { The SFEE: } \\
& q_{1} 2^{\circ}-M_{1} z^{\circ}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}{ }^{2}}{2}+0 \\
& =(860-960) \times 10^{3}+\frac{v_{2}^{2}-250^{2}}{2} . \\
& -v_{2}=512.34 \mathrm{~m} / \mathrm{sec}^{-} .
\end{aligned}
$$

PROOB One kg of fluid enters a nozzle with a velocity of $300 \mathrm{~m} / \mathrm{min}$ and enthalpy of $2990 \mathrm{~kJ} / \mathrm{kg}$. The enthalpy of fluid at exit is $2760 \mathrm{~kJ} / \mathrm{kg}$. The ns azt is placed horizontally and neglect heat laffe from the nozzles.
Determine (a) The Velocity of the fluid at the exit
(b) The mass flow rate, if the area of the nosier is $0.095 \mathrm{~m}^{2}$ and the specific volume at inter io $0.19 \mathrm{~m}^{3} / \mathrm{lg}$.
(c) The exit area of the nozzle, if specific volume at exit is $0.5 \mathrm{~m}^{3} / \mathrm{kg}$.
sol. Giver, $m=1 \mathrm{~kg}$

$$
\begin{aligned}
& V_{1}=300 \mathrm{~m} / \mathrm{min}=5 \mathrm{~m} / \mathrm{sce} \\
& h_{1}=2990 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=2760 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

i) Escit velocity,

$$
\begin{aligned}
V_{2} & =\sqrt{V_{1}{ }^{r}+2\left(h_{1}-h_{2}\right)} \\
& =\sqrt{5^{2}+2(2990-2760) 10^{3}}=678 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=0.095 \mathrm{~m}^{2} \\
& v_{3_{1}}=0.19 \mathrm{~m}^{3} / \mathrm{kg} \\
& v_{32}=0.5 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

ii) Mass (Howrate, $m=\frac{A_{1} v_{1}}{v_{s_{1}}}=\frac{0.095 \times 5}{0.19}=2.5 \mathrm{kss} / \mathrm{sec}$
iii) Exit area $A_{2} ; m=\frac{A_{2} V_{2}}{V_{s_{2}}} ; A_{2}=\frac{m V_{s}}{V_{2}}=\frac{2.5 \times 0.5}{628}$ $=0.00184 \mathrm{~m}^{2} \mathrm{~s}$
W\&kdore in a steady flor process
we kos that the steady flor equation

$$
\partial q-\partial w=d h+d\left(k_{e}\right)+d(p E)_{Q 1} \rightarrow \angle L \angle \geq 0^{2}
$$

we also know that, $h=u+P \gamma s=u+P v$
differentiating the expression, $d h=d x+d(P v)=d u+v d p+P d r$
According to First low,

$$
8 q=d u+p d u \text {. }
$$

substituting the $d n$ value in equation (1),

$$
\begin{equation*}
\delta q \dot{q}-\delta \omega=\delta q+v d p+d(K e)+d(p \dot{e}) \tag{2}
\end{equation*}
$$

neglecting $K e$ and $P e$.
The equation (2) becomes, - $\delta \omega=v d p$
on integrating $\quad \therefore \quad \& \omega=-v d p$

Workdone for varions steady flow processfy
(1) Constant volume process,

$$
W_{1-2}=-\int_{1}^{2} v d p=-v\left(p_{2}-p_{1}\right)=v\left(p_{1}-p_{2}\right)
$$

(2) Constont presesue process

$$
W_{1-2}=-\int_{1}^{2} \nu d p=\nu\left(p_{1}-p_{2}\right)=0 \text { since } p_{1}=p_{2} \text {. }
$$

(3) Constant tempenture procoss $\left(p_{1} v_{1}=p_{2} v_{2}\right)=p_{2}$,

$$
\begin{aligned}
w_{1-2} & =-\int_{1}^{v_{1}^{2}} d p=\int_{1}^{2} \frac{p_{1} v_{1}}{p} d p=-p_{1} v_{1} \int_{1}^{2} \frac{d p}{p} \\
& =-p_{1} v_{1}\left[\ln p_{2}-\ln p_{1}\right]=p_{1} v_{1} \ln \frac{p_{1}}{p_{2}}=p_{1} v_{1} \ln \frac{v_{2}}{v_{p}}
\end{aligned}
$$

(4) Adiabatic process:- $p \nu^{r}=p_{1} \nu_{1}^{r}=p_{2} v_{2}^{r}=c ; v=v_{1}\left(\frac{p_{1}}{p}\right)^{\frac{1}{r}}$

$$
\begin{aligned}
w=-\int_{1}^{2} v d p & =-\int v_{1}\left(\frac{p_{1}}{p}\right)^{\frac{1}{r}} d p \\
& =\nu_{1} p_{1}^{\frac{1}{\gamma}} \int_{1}^{2} p^{-\frac{1}{r}} d p=-v_{1} p_{1}^{\frac{1}{r}} \cdot\left[p^{-\frac{1}{\gamma}+1}\right]_{-\frac{1}{\gamma}+1}^{2} \\
& =\frac{\gamma}{\gamma-1} \times-v_{1} p_{1}^{\frac{1}{r}}\left[p_{2}^{\frac{\gamma-1}{r}}-p_{1}^{\frac{\gamma-1}{\gamma}}\right] \\
& =\frac{\gamma}{\gamma-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
\end{aligned}
$$

(5) polytropic process $\frac{p_{1} v_{1}^{n}=p_{2} v_{2}^{n}}{n}=p v^{n}=c$

$$
w_{1-2}=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
$$

[PR0日] A cylinder containg $0.115 \mathrm{sm}^{3}$ of ges ane 1 bor and $90^{\circ} \mathrm{c}$. The gas is compresed to a vaure $0.288 \mathrm{~m}^{3}$, the blual prassine being 5.67 borr. calalate (i) mass of the 8 as (i) value of inder of comprasican (ili) increse in sinternt energs of the gss (v) heat transten deving comprosion. of atten above compressian, ges i to be coled at constant prosgue to its original tempertare of $90^{\circ} \mathrm{C}$, find wak \& compresstan reeruhed. Assume, $\gamma=1.4$ and $R=0.3 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
E0. Given, $v_{1}=0.115 \mathrm{~m}^{3}, p_{1}=16 \mathrm{bar}, \sigma_{1}=90+273=363 \mathrm{~K}$
$v_{2}=0.0288 \mathrm{~m}^{3}, p_{2}=5.67 \mathrm{bar}, r=1.4 ; R=0.3 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
(i) mass of the $\mathrm{gas}(m)$ we knows, $p_{1} v_{1}=m \mathrm{RT}$

$$
\therefore \mathrm{m}=\frac{R_{1 v}}{R_{1}}=\frac{1 \times 10^{5} \times 0.115}{0.3 \times 1000 \times 367}=0.1056 \mathrm{kgs} .
$$

(ii) Valueg index focicoppesten (x):

$$
p_{1} r_{1}^{n}=p_{2} v_{2}^{n}
$$

$$
\therefore n=\frac{\log _{e} R_{2} / f_{1}}{\log _{e} v_{1} / v_{2}}=\frac{\log _{e} \frac{5.67}{1}}{\log _{e} \frac{0.15}{0.0288}}=1.253
$$

(iii) oncrese in intanal evergs ($\Delta \Delta$)
1.253-1

Fri pdytropic conprationt $21, \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{x_{i-1}} ; \tau_{2}=\pi 1\left(\frac{N_{1}}{v_{2}}\right)^{n-1}=363\left[\frac{0.115}{0.025 y}\right]=515.17 \mathrm{~K}$
$\therefore \Delta U=m C_{V}\left[T_{2}-T_{1}\right]=m \frac{R}{\gamma-1} \cdot\left(\tau_{2}-T_{1}\right)=0.1056 \times \frac{0.30}{1.4-1}[5(5.17-363]=12.05 \mathrm{~kJ}$.
(iv) Heat Trantlew(s)

$$
\begin{aligned}
& Q=\Delta u t \omega ; W_{1-2}=\frac{P_{1} v_{1}-P_{2} v_{2}}{n-1}=\frac{11 \times 0.155-5.67 \times 0.0258]}{1.253-1} \times 10^{5} \\
& \therefore a=12.05-19.05=-7 \mathrm{kJV} \\
& \text { wirk deremsitus }
\end{aligned}
$$

(i) Afto compinesion, it is requived to col ges to original temp. of $90^{\circ} \mathrm{C}, T_{3}=J_{1}$

$$
\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{3} V_{3}}{T_{1}} ; \quad p_{2}=p_{3} ; \quad V_{3}=V_{2} \times \frac{T_{1}}{T_{2}}=0.0288 \times \frac{363}{515.17}=0.0202 \mathrm{~m}^{3}
$$

A Additional wokk requied', $W=P_{2}\left[V_{3}-V_{2}\right]=5.67 \times 105[0.0202-0.0288]=-487 \mathrm{~kJ}$

Ex.- First lab- of Thermodynamics statos that" heat and woik are mutually convariblet. st can also be stated as unenever a sigstew undergosa cyelic process, the net teat syfpilied to the syitom is aqual to the rot wikdore by the system "nothematiclly, $\mathcal{O} S Q=$ f $S W$. The above statement valid for system undengoing cyctieg.
Fora system undugding change of state where both theat and wisk tronffu tives pace, the ret evergy is stred in the system in the folmof inteonal enargy.
 Theretore, energy is congenved sin thes ofenatiou, it leadi is to a conclusion that, First law of thermodynamics is sust anotiter statement' of law of congelitation of turgy ad perfectly gos by the stotement. That "ine energy meither be created moi dogtrojed but changes
PRESB A no3zle receckes $1200 \mathrm{~kg} / \mathrm{hr}$ of stam at $1.3 \mathrm{MN} / \mathrm{m}^{2}$, syecuic one bome $142 \mathrm{lir} / \mathrm{lee} \mathrm{kg}$, internal energy $4400 \mathrm{~kJ} / \mathrm{kg}$ and regligeble speeed. At exit, the preggicis $100 \mathrm{KN} / \mathrm{min}^{2}$, specific volume. $1660 \mathrm{Mr} / \mathrm{kg}$ and intand evergy $2200 \mathrm{~kJ} / \mathrm{kg}$. Culculate eseit udboty of semen 5oc masis of stean, $m=1200 \mathrm{~kg} h_{\mathrm{wr}} \dot{+} P_{1}=1.3 \mathrm{MN} / \mathrm{m}^{2}=1.3 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ $\tau_{B_{1}}=142 \mathrm{let} / \mathrm{se} \mathrm{kg}=142 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg} ; u_{1}=4400 \mathrm{~kJ} / \mathrm{kg}$. similarly, $p_{2}=100 \mathrm{kNhoN}=100 \times 10^{3} \mathrm{~N} / \mathrm{miN}^{N} ; v_{s_{2}}=1660 \mathrm{lit} / \mathrm{Vg}$.

$$
u_{2}=2,200 \mathrm{~kg} / \mathrm{ly} . \quad=1.66 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\therefore v_{2}=\sqrt{v_{1}^{2}+2(h-h(2)}: \sqrt{2\left(h^{-}-h_{2}\right)}
$$

\therefore since $h_{1}=u_{1}+p_{1} v_{s_{1}}=4400 \times 10^{3}+1.3 \times 10^{6} \times 142 \times 10^{-3}=4584600 \mathrm{~J} / \mathrm{H}_{2}$
$h_{2}=u_{2}+P_{2} v_{3_{2}}=2200 \times 10^{3}+100 \times 10^{3} \times 1660 \times 10^{-3}=2366000 \mathrm{~J} / \mathrm{kg}$
Eait velaty; $V_{2}=\sqrt{2\left(h_{1}-h_{2}\right)}=\sqrt{2(4584600-2366000)}={ }_{1}^{2106 \mathrm{~m} / \mathrm{sec}}$
prob show that energy is a property of the system.
preque consider a system, underging a change of state 1 to 2 along poltiA. A

By re-arrangling, weget $\int_{1}^{2} \delta a_{A}-\int_{1}^{2} \delta \omega_{A}=\int_{1}^{2} \delta a_{B}-\int_{1}^{2} \delta W_{B}$;

$$
\text { proces } \rightarrow \text { volune }
$$

 betwea tho foxile
The quatity $\delta a-\delta \omega=\Delta E$ $\frac{3+y_{2}}{142}$

$$
\begin{gathered}
\therefore \Delta E_{A}=\Delta E_{1 S} \\
\text { similary } \Delta E_{A}=\Delta E_{C},
\end{gathered}
$$

The change in energy dos not depond on path followed but only depends on staty 1 and 2
(2eses A clised systeri undergoes a relonsithe procos at a Constont presiswe procas of $3-5$ bor and is volume change from $0.15 \mathrm{~m}^{3}$ to $0.06 \mathrm{~m}^{3}$. 25 kJ of heat is refected by systom during, the proass. Determine the change in intinnal evergy of the systan.
50. presserie, $p_{1}=p_{2}=3.5$ bar $=3.5 \times 10^{5} \mathrm{~N} / \mathrm{Nn}^{2} ; v_{1}=0.15 \mathrm{~m}^{3}, v_{2}=0.06 \mathrm{~m}^{3}$

Heat adected by syster, $q=-25 \mathrm{~kJ}=-25 \times 10^{7}$ Jonles w okdove, $w_{1-2}=P\left[v_{2}-V_{1}\right]_{2} 3.5 \times 105[0.06-0.15]$ Acoording to Firytilate, $\left.Q=\Delta U t W ;-25 \times 10^{3}=\Delta U+(-3), 500\right)$ $=-31,500$ Jade. $\therefore \Delta U=6,500$ Joule?

Whik is dare on systen beane compresion procis sudure deonass (-iu).

Pperp What' do you under gland by thespometric propecty and thermoretric substance?

Sol. The me-germement of temperative dopends on estableshment of theimal equilloritum betweena systeam and the device used to meagure the tempentave.
Theamometric propealy: - The sensing device should have ot lengt are meageorable physical propaty; that change weth change sis terp. Such apopatycalled Tremadite pis' Thermonctric substancer The gubstance uthich shous changes in theimometric propoly ieeled

 [Ew] Tempentare Sale:-

To messure the temp. \& a syptow, fome numerica values are agtigned on the Thermomete, Thare numieviculuvalues on thermomets together callentempsele. Scleof pampunbure betwean thoo.fixed paints is oreis melthy pint and dis bolliy potht $x=a l+b$.
There are 4 different sales- incentiginde sole iti) Farenteit scle ili) Absole kolvingle (i) Reamur sate is Centigrade (or) celsius sate: orithi, melting piot of ice miorked of $0^{\circ} \mathrm{C}$ and boiling pout of antes a) $100^{\circ} \mathrm{C}$, under atmesphere prefouc. ot i divided in to 100 cend parts. denoted ing o C .
(1) Farenheit scile (8): $32^{\circ} \mathrm{FH} 212^{\circ} \mathrm{F}$ are ile point \& steam pount rejpectiveds.

$$
\begin{aligned}
t=a l+b-1 \quad 32 & =a l_{1}+b \\
212 & =a l_{2}+b
\end{aligned}
$$

$$
\text { Fron (2) (3), } a=\frac{180}{l_{2}-l_{1}} \quad b=32-\frac{180 l_{1}}{l_{2}-l_{1}}
$$

$$
t^{\circ} F=a l+b=\frac{180 l}{l_{2}-l_{1}}+32-\frac{\frac{180 l_{1}}{l_{2}-l_{1}}=180\left(l-l_{1}\right)}{\left(l_{2}-l_{1}\right)}+32
$$

Reldion betreen ${ }^{\circ} \mathrm{C}$ e 0 F are; $k^{\circ} \mathrm{F}=180\left(\frac{l-11)}{1_{2}-l_{1}}+32=180 \times \frac{t^{\circ} \mathrm{C}}{100}+32=\frac{901}{100} \frac{9}{5} 6^{\circ}+32\right.$

"

What if Mechancal equivatent of tost?
[ax. Joulds expluiment concluded that there exigts a relationship batween heat and wik, and both are two foirs of energy Tode conducted expainent wath dufferat anounts of wik whth varlios systens and concluded thit the wrik input is always propertionat to the hect trovgtened blom
 sion s. ICunt; $I=1$

$$
\begin{aligned}
& \begin{array}{ll}
t=a t+b r-(1) \quad \text { (2) (2) (3) }, a=\frac{100}{l_{2}-l_{1}} ; b=-a l_{1}=\frac{-100 l_{1}}{l_{2}-l_{1}} \\
0=a l_{1}+b-\text { (3) } & \therefore t^{\circ} c=a l+b=1001
\end{array} \\
& 100^{\circ}=a l_{2}+b \text { (3) } \quad \therefore t^{\circ} C=a l+b=\frac{1001}{1-1_{1}}-\frac{100 l_{1} 1_{2}-l_{1}}{12-l_{1}}=\frac{100\left(l-l_{1}\right)}{\left.l_{2}-l_{1}\right)}
\end{aligned}
$$

[PRos] Derive the expression fo steady flan energy equation
SSOL. Consider an open system through which
the working substance flows at a steady rate as showninfegare. The working

substance enters at section (1) and leaves system at section (2).
set $T_{1}=$ pressure of working sechationce entering the system, $\mathrm{N} / \mathrm{m}^{2}$
$v s_{1}=$ specify volume
$V_{1}=$ velocity of wriking substance " " ", m/sec
$u_{1}=$ specific inter neal evans of posikit substance at rivet, J / kg
$z_{1}=1$ eight above datum level for mullet in metro.
similarly $p_{2} v_{s_{2}}, v_{2}, u_{2} \& z_{2}$ are corresponding values at exit
Set $q_{51-2}=$ Hent supplied into system J / kg
$W_{1-2}=W_{S k}$ delivered by the system, Joky.
Total energs of the system entering per kgit-workhy substance

$$
\begin{aligned}
& e_{1}=e_{2} \\
& \frac{u_{1}+p_{1} v_{3}}{h_{1}}+\frac{v_{1}}{2}+g z_{1}+q_{1-2}=u_{2}+p_{2} v_{3_{2}}+\frac{v_{2}}{2}+g 22+w_{1-2} \\
& \therefore q_{1-2}-w_{1-2}=\left(h_{2}-\mu_{1}\right)+\frac{v_{2}^{2}}{2}-\frac{v_{1}^{2}}{2}+g\left(22-v_{1}\right)
\end{aligned}
$$

PRRAB A blower handles. $1 \mathrm{~kg} / \mathrm{sec}$ of ar at $20^{\circ} \mathrm{C}$ and cargenes 1.5 kW. Nt inlet and outlet velocities of air are $100 \mathrm{~m} / \mathrm{sec}$ and $150 \mathrm{~m} / \mathrm{sec}$ respectued.
Find the exit air temperature. Assure adiabatic conditions (Quo)
50. power congaed, $W=-15 \mathrm{~kW}\left(-v_{c}\right)$

STE, $92^{2}-2_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+g\left(32-\lambda_{1}\right)^{\circ}$.

$$
\begin{aligned}
& \frac{Q_{1-2}}{7}-\frac{W_{1-2}}{2}=\left(h_{2}-h_{1}\right)+150^{2}-100^{2} \\
&-(-15) \times 10^{3} \\
&=\left(h_{2}-h_{1}\right)+\frac{150^{2}-100^{2}}{2} \\
& \therefore\left(h_{2}-h_{1}\right)=m C p\left[T_{2}-T_{1}\right]=87500^{2} \\
&=1 \times 1.005 \times 10^{3}\left[T_{2}-(20+273)\right]=8750
\end{aligned}
$$

Exit Alrtapi: $T_{2}=301.706 \mathrm{~K}$ Con $28.7^{\circ} \mathrm{C}$
Cross Explain The working of content volume gas thermonatio.:
Sou] The The monitor caride of is Bulb consist o of fixed mass of ideal gees
(ii) capillary tube (iii) U-tube Manometry.

During operation, the buds gas bulls communicate with a constant temp. bath. Due to teat exchange between bath and bulls, heat trousfor to The gas in bulb takes place and gas will expand and pushes mercury below Mark A. By adjusting flexible tube up to MarkA, the differate in level of mercury in two limber h) seconded

pirsily, the \therefore gas bulb is paraded at triple point tempentere $(273.5 \mathrm{k})$ and Pip is calculated. $\left[P_{t p}=P a t m+\rho g h t p\right]$. Now, the butts is brought in contact with a system whose lem $p(T)$ is to be mergured and meargore p.
\therefore The new terpentine, $T=273.15 \times \frac{p}{\beta+p}$.
2. (a) Define First law of Thermodyniamics and What are the limitations of first law of thermodynamics?
(b) A nozzle receives $1200 \mathrm{~kg} / \mathrm{hr}$ of steam at $1.3 \mathrm{MN} / \mathrm{m}^{2}$, specific volume $1421 \mathrm{lit} / \mathrm{kg}$, internal energy $4400 \mathrm{~kJ} / \mathrm{kg}$ and negligible speed. At the exit , the pressure is $100 \mathrm{kN} / \mathrm{m}^{2}$,specific volume $1660 \mathrm{lit} / \mathrm{kg}$ and internal energy $2200 \mathrm{~kJ} / \mathrm{kg}$. Calculate the exit velocity of the steam.
[SOL] (a). First law state that "heat and wokk are mutually convertible". st can be also sited that as whenever a syetem undorgass cgaclic process, the net heat spplied to system is equal to net wik dare by system. Hiathematically, $\delta \delta Q=\delta \delta W \rightarrow$ The statement valid for systems undergaing cyclic procises. It systems undorgoing change of stante (orprocess) where heat and work tranglen +ikeyplice, the net energy (Δ uv) is stred in The fiem of internd energy. Mattiemat cally,$Q-W=\Delta u$. where, $Q=$ Hect suyplied to the Sustem, $w=$ wakdore bo system, $\Delta u=$ change in internal energy. Therefre, evergy is conselved [couverted $\operatorname{tlan} Q$ to $W]$. Thenfre, it is callad Lals of congentation of energy. LiMiTATIONS of first lalcr- (1) Limitation on conversion of one form g. energy to otherffim (2) Accordingto $1^{\text {br chats, }} 70$ restriction on dinection 4 clow of wik and hent, which is mot true en realty (3) Wrikcan be completely sin to heat but reverse \& not pasibe completely. (4) Heat an not flow (ham cld body to hot body
 Sot.(b) GiVan, $m=1200 \mathrm{~kg} / \mathrm{hr}, t_{1}=1-3 \mathrm{MN/m}{ }^{2}=1.3 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

Similarly, $p_{2}=100 \mathrm{kN} / \mathrm{m}^{2}=100 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}, v_{52}=1660 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{F}, \mu_{2}=2200 \times 10^{3} \mathrm{~J} / \mathrm{kg}$.
Accordiy to SFEE, $\left.g r_{1-2}^{0}-y_{0}^{0}\right)_{-2}^{0}=\left(h_{2}-h_{1}\right)+v_{2}^{2}-k_{1}^{20}+g\left(g_{2}-2^{2}\right) ; v_{2}=\sqrt{y^{2}+2\left(h_{1}-h_{2}\right)}=\sqrt{2\left(h_{1}-h_{2}\right)}$

\therefore Exit velocity, $v_{22} \sqrt{2\left(h_{1}-h_{2}\right)}=\sqrt{2(4584600-2366000)}=2106 \mathrm{~m} / \mathrm{sec}$.
2. (a) What is the Zeroth law of Thermodynamics? Explain how it is applied for the measurement of temperature.
(b) Define the thermometric property? Explain the working of constant volume thermometer.

S8 () Establish the correlation between Centigrade and Fahrenheit sćale
Q it states that When two systions ore in Hermal Equelebricum then they einturn have thermal equilibrthm with each dher.
of systems S_{1} and S_{2} are individually in Hermil equiliortem.
with a third systom s_{3}, then systans $s_{1} k S_{2}$ alsic in equifletorium

2. A cylinder contains $0.115 \mathrm{~m}^{3}$ of gas at 1 bar and $90^{\circ} \mathrm{C}$. The gas is compressed to a volume. : m^{3}, the final pressure being 5.67 bar. Calculate
(i) The mass of the gas
(ii) The value of index of compression
(iii) The increase in internal energy of the gas
(iv) The heat transferred during the process

Take, $\gamma-1.4 ; R=0.3 \mathrm{kd} / \mathrm{kgk}$.
$C_{V}=\frac{R}{\gamma-1} ; C_{p}=\frac{\gamma \cdot R}{\gamma-1}$

If, after above compression, the gas is to be cooled at constant pressure to its original temperature of $90^{\circ} \mathrm{C}$, find the work of compression required
Sol. Given, Initial volume, $V_{1}=0.115 \mathrm{~m}^{3}$.
Initial pressure, $p_{1}=1606, T_{1}=90+273=363 \mathrm{~K}$.
Final volume, $v_{2}=0.0288 \mathrm{~m}^{3}, p_{2}=5.67$ boor.
(a). MASS OFTHE BAS (m):- we know Equation of state, $P_{1} N_{1}=M R T_{1}$.

$$
\therefore m=\frac{p_{1} \eta}{R T_{1}}=\frac{\left(1 \times 10^{5} 3 \times 0.115\right.}{(0.3 \times 1000) \times 367}=0.104 \mathrm{~kg} .
$$

(b) value of index of compression $(n): p_{1} v_{1}^{n}=-p_{2} v_{2}^{n} ; n=\log e^{\left(p_{2} \mid p_{1}\right)} \quad \rightarrow$ vdume Value of index of comperesiou $(n): \quad p_{1} v_{1}^{n}=-p_{2} v_{2} ; n=\frac{\log _{e}\left(v_{1}\right.}{\log _{e}\left(v_{1} / v_{2}\right)}=\frac{\log _{e} \frac{5-67}{1}}{\log _{e} \frac{0.115}{0.025 s}}$
increase in Internal energy:- (du) $\quad \therefore n=1.253$. we know, $\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{r_{2}}\right)^{n-1} ; T_{2}=T_{1}\left(\frac{V_{1}}{r_{2}}\right)^{n-1}=363\left(\frac{0.115}{0.0288}\right)^{1-253-1}=515.17 \mathrm{~K}$.
$\therefore \Delta u=$ change in Intend engr $=m c_{r}\left(T_{2}-T_{1}\right)=m\left(\frac{R}{8}\right)\left(\sigma_{2}-T_{1}\right)$. $\frac{1}{J}$ Joule
(4) Heat Traveled (Q) $w=P_{1} V_{1}+R_{2} V_{2}=0.1056 \times \frac{0.3}{7.4-1}\left(515 . \frac{8}{2-363)}=18.0 \mathrm{k}\right.$ Joule

$=12.05-19.08=-7.03 \mathrm{~kJ} . \quad 1.253-1$
APTER COMPRESSION, IT is REQUIRED TO COOL GAS TO ORIGINA TEMPERAURE OF qi ($\left(T_{3}=\pi\right)$
\therefore PROCESS $(2-3) \frac{p_{2} v_{2}}{T_{2}}=\frac{k_{3} v_{3}}{T_{3} T_{1}} \Rightarrow k_{2}=k_{3} ; \therefore v_{3}=v_{2} \times \frac{T_{3}}{T_{2}}=\frac{363 \times 0.0289}{515.17}=0.0202 \mathrm{~m}^{3}$.
\therefore Additions wat reamed, $W_{23}=T_{2}\left[V_{3}-V_{2}\right]=5.67 \times 10^{5}[0.0202-0.0288]=-41870 \mathrm{~J}$
2. (a) Derive the steady flow energy equations for steam turbine and rotary compressor.
(b) The gas leaving the turbine jet engine flows steadily in to the jet pipe with enthalpy 800 k / kg and velocity $123 \mathrm{~m} / \mathrm{s}$. The exit from the pipe is at enthalpy $450 \mathrm{k} / \mathrm{kg}$, and exhaust in line with-intake. Neglect heat losses from the system determine the velocity gas leaving the
pipe.
 Cor pressure and las hompercuve.
 $q_{1-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+8(22-21) ;$ Here $q_{1-2}=0, n_{\text {turbine cingelted out }}$ $=-$ Me, if mot insulated.

ROTARY COMPRESSOR:-

which compress air coo see and supplies at high presence in large amity.
In. compress, $q_{1-2}=-$ we (hent rejected by syitio)
ज1-2. -we (Work supplied to side.
(b) Solution:-Given, $h_{1}=800 \mathrm{~kJ} / \mathrm{kg}_{8}=800 \times 10^{3} \mathrm{~J} / \mathrm{k}_{9}, \quad v_{1}=123 \mathrm{~m} / \mathrm{sec} ; h_{2} \cdots 450 \mathrm{~kJ} / \mathrm{kg}=450 \times \mathrm{J} / \mathrm{l}^{3} \mathrm{~kg}$

According to SFEE, $q_{T-2}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{v_{2-1}^{2}-v_{1}^{-}}{2}+g\left(3 / z_{i-2}^{*}\right)$

$$
\begin{aligned}
0 & =0=(860-960) \times 10^{3}+v_{2}{ }^{2}-250^{2} \\
\Rightarrow v_{2} & =512 \cdot 34 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

Explain Joule's experiments with suitable sketches.

Joule conducted Several experiments which led to the frimation of First law.

Whin weight is allowed to foll to a carton distance, wok is dine on water through rotation of stirrer. When stirrer rotates inside tho water, heat is produced. due to fiction and is meageved by rise in -temp. of water. Further, insulation (ham tank was removed' and the longe system placed in later bath.
The heat tronffirmed blow the system in order to bring some initial conditions. Whenever a cased system cundirgos a cycle, the wat input to the rygtem is probational to the rept the at output. \quad of $\delta \omega \alpha \oint 8 a$ (or) $\quad \phi \delta \omega=J \cdot \oint \delta a \quad J=1$ in sic coils.

PROB. Air flows steadily at the nae of $0.5 \mathrm{kss} / \mathrm{sec}$ through an ald compression, entering at $7 \mathrm{~m} / \mathrm{se0}$ velocity, 100 kPa preface and $0.95 \mathrm{~m}^{3} / \mathrm{kg}$ volume, and lealiorg at $5 \mathrm{~m} / \mathrm{s}$, 700 kra and $0.19 \mathrm{~m}^{3} / \mathrm{kg}$. The sintannal energy of ald leaving is $90 \mathrm{~kJ} / \mathrm{kg}$ grate then that of the abr entering. Cooling water in the compresen jacket aldoses teat nom the air at The rate of 58 kW . Compute the rate of shaft wok imper to the air in kW. ant ford
sol. At singlet, $m=0.5 \mathrm{kes}$) sec
velocity $\quad V_{1}=7 \mathrm{~m} / \mathrm{sec}$ press five, $p_{1}=100 \mathrm{kPa}=100 \times 10^{3} \mathrm{~Pa}$
speafic volume, $v s_{1}=0 A 5 \mathrm{~m}^{3} / \mathrm{Kg}$
ot exit: $\left.V_{2}=5 \mathrm{~m} / \mathrm{s} ; P_{2}=700 \times 10^{2} \mathrm{~Pa},{ }_{8_{2}}=0.19 \mathrm{~m}^{3}\right)_{\mathrm{Kg}}$
 u_{2} is fretter them u_{1} by $90 \mathrm{~kJ} / \mathrm{kg}_{\mathrm{y}}$; so $u_{2}-u_{1}=90$ ko/ kg.
By Applying SFEF; $\quad q_{1-2}-w_{r_{2}}=\left(h_{2}-h_{1}\right)+\frac{1}{2}\left[v_{2}^{2}-v_{1}{ }^{2}\right]+g\left(22_{2}-2_{1}\right)$

$$
\begin{aligned}
& \text { here, } a_{1-2}=\frac{Q_{1-2}}{m_{m}}=\frac{-58 \times 10^{3}}{0.5}=-116 \times 10^{2} \text { of ks (-w) } \\
& \therefore o_{1-2}-5_{1}-2=\left(u_{2}-u_{1}\right)+\left(p_{2} v_{32}-p_{1} v_{1}\right)+\frac{1}{2}\left[v_{2}^{N}-v_{1}^{N}\right]+0 \\
& -116 \times 10^{3}-15_{1-2}=90 \times 10^{3}+\left(700 \times 10^{3} \times 0.19-100 \times 10^{3} \times 0.95\right)+\frac{1}{2}\left[5^{2}-7^{2} J\right. \\
& =90 \times 10^{3}+38 \times 10^{3}+(-12) \\
& \therefore W_{2}=243,988 \mathrm{~W}=243.95 \mathrm{KW}
\end{aligned}
$$

-pros. What is steady flow process?
ga. In steady flor process The flows rate of mass and energy donot vary wilt time and properties with in the system are invariant with time at every point. The analysis of steady flow process is boged on the principle of conservation of energy. consider ain sen systarn through which the wriking substance flasks at a steady rate as shown infigere. The working substance enter at section (1) and leaves sygtern at section (2).

Let $P_{1}=$ prosine of cosking substance entaing
The systom, $\mathrm{N} / \mathrm{m}^{2}$
$V_{s}=$ sp.vdeme of wiking entaing the system, $\mathrm{m}^{3} / \mathrm{Ms}$
$V_{1}=$ volocialy at in et, m / sec.
$u_{1}=$ specific internal
enaggat sinlet, ∂ / kg
$z_{1}=$ Heightabave' datum level at inlet in metres.
Similarly, $k_{2}, v_{s_{2}}, v_{2}, z_{2}, 22^{\circ}$ are correspanding valuesint out.
Let $a_{1-2}=$ Heat supplied into the syttem, J/kg
$v_{1-2}=$ Wose delivered by the syptenc J / kg.
Total enorgy of the sgester esteing per kg of wriling substance
$=$ total energy pou ky at exit

$$
\begin{aligned}
& e_{1}=e_{2} \\
& u_{1}+p_{1} v_{31}+\frac{v_{1}^{2}}{2}+g 2_{1}+q_{1-2}=u_{2}+p_{2} v_{s_{2}}+\frac{v_{2}^{2}}{2}+g z_{2}+w_{1-2} \\
& \therefore q_{r_{2}}-w_{1-2}=\left(h_{2}-h_{1}\right)+\frac{t_{2}^{2}-v_{1}}{2}+g\left(z_{2}-z_{1}\right)
\end{aligned}
$$

PROB- A turbo compregsar doluna $2.33 \mathrm{~m}^{3} / \mathrm{s}$ at 0.276 Mpa , $43^{\circ} \mathrm{C}$ which is heated at thes pressue to $43^{\circ} 0^{\circ} \mathrm{cand}$ findlly expanded in a turbine which deliveng 1860 kw . Daring The expansion There is a heat transfor of $0.09 \mathrm{~mJ} / \mathrm{s}$ to the suoroundr्gs. Calculate the tertare exhang if changs is KE and PE regligitle.

Sols
preserue after comperss, $p_{c}=0.276 \times 10^{6} \mathrm{R}$
volue flarnte, $V=2-33 \mathrm{~m}^{3} / \mathrm{s}$
rempenture, $T=43+273=316 \mathrm{k}$.
\therefore we kmar, $p V=m R T$

$$
\therefore \text { moxiflar Mat,on }=\frac{P N}{R T}
$$

power delulted by terbire, $P=1860 \mathrm{~kW}$ (given)
power developed by tworbive per cunt mast, $w_{1,2}=\frac{\left(1860 \times 18^{3}\right)}{m}=\frac{1860 \times 10^{3}}{7.09}$
Heat trangle flam turbire, $Q=0.09 \mathrm{MJ} / \mathrm{s}$

Hest transfes 620 m turbire per cenet moss, $q_{r_{1-2}}=\frac{Q}{2}=\frac{0.09 \times 10^{6}}{7.09}=12.64 \times 10^{3}$ Take inegitue of $q_{1-2}=-12 \cdot 6 \cdot \times,{ }^{2} \mathrm{~J} / \mathrm{kg}$

$$
\begin{aligned}
& =\frac{0.276 \times 10^{6} \times 2.33}{287 \times 316}=7.09 \mathrm{kr} / \mathrm{se} \quad\left[\begin{array}{l}
\text { Thke, } R=280 \\
j 1 \mathrm{k}_{0} \mathrm{~K}
\end{array}\right] \\
& \text { Jikok }
\end{aligned}
$$

Apply SFEE to the Turbine,

PROB. A Nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nosste, the enthalpy of the fluid posing is $3000 \mathrm{~kJ} / \mathrm{ky}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The noble is hisizents and there is negligible heat loss blomit.. Find the velocity at exit flor the rosie. of the inlet area is $0.1 \mathrm{rm}^{2}$ and the specific volume at silt is $0.187 \mathrm{~cm}^{3} / \mathrm{kg}$.. Find the quass flow note.
solution At invert, $h_{1}=3000 \mathrm{~kJ} / \mathrm{kg}, v_{1}=60 \mathrm{~m} / \mathrm{s}$ At exit, $h_{2}=2762 \mathrm{KJ} / \mathrm{k}, v_{2}=$?
\therefore Apply SFEEE toTE nos sk, $\left.A^{\circ}-N^{\circ}=\left(h_{2}-h_{1}\right)+\frac{v_{2}^{2}-v_{1}^{2}}{2}+2(22)^{2}\right)^{\circ}$

$$
0=(2762-3000) \times 10^{3}+\frac{v_{2}^{m}-60^{2}}{2}
$$

$$
\therefore v_{2}=\sqrt{238 \times 10^{3}+(60)^{2}}=\sqrt{238000+3600}=491.5 \mathrm{~m} / \mathrm{sec} .
$$

mass flor Ate, $m=\frac{A_{1} V_{1}}{V_{31}}=\frac{A_{2} V_{2}}{V_{3}}=\frac{0.1 \times 60}{0.1 .87}=32 \mathrm{r} 3 / \mathrm{sec}$. poring one cede, the working fluid in an engine engages sitwo work interaction: 15 kJ to the fluid and 44 kJ form the fluid, and three heat: interactions: two of which are knows : 75 kJ to the fluid and 40 kJ Glom the fluid. Evaluate the magnitude and direction g thing heat transfer?
[8.] $W_{1-2}=-(15) \mathrm{kJ} ; w_{2-3}=44 \mathrm{~kJ} ; w_{3-1}=0$ (Nab $w_{\text {alk trasfou). }}$ $Q_{1-2}=75 \mathrm{~kJ} ; Q_{2-3}=-40 \mathrm{KJ} ; Q_{3-1}=? \rightarrow$ find.
We know for cyclic process; Apply fist law: $\oint \dot{\delta} \dot{\omega}=\oint \delta Q$. $w_{1-2}+w_{2-3}+w_{3-1}=Q_{1-2}+Q_{2-3}+Q_{3-1} ;-15+44=75+(-4 Q)+Q_{3}-1$ $\therefore Q_{3-1}=-6 \mathrm{~kJ}$ (Heat rejected by the fluid). A or in a cylinder compressed isothermally rom $85 \mathrm{KPa}, 29^{\circ} \mathrm{C}$ to 380 KPa . The inffital volume is $0.423 . \mathrm{m}^{3}$. Find heat trangtio and change en Entropy of abr.
\therefore detect Transfer, $a=$ work requited for compressor $=t_{1} v_{1} \ln \frac{9}{p_{2}}=85 \times 0.423 \ln \frac{85}{380}$ change in Entry $\left(s_{2}-S_{1}\right)=\frac{d \theta}{T}=\frac{p_{1} v_{1}}{T_{1}} \ln \frac{p_{1}}{1_{2}}=\frac{85 \times 0.423}{(29+273)} \ln \frac{8}{380^{\circ}}-\dot{Q} .178 \mathrm{~kJ} / \mathrm{kg} k$
 Gases which do not change their phoge during thermedyonmic procass and obey Boybes law, charles law and characteristic gas equation, are kuown knosis as ident (ars pryect gases.
A gas can be modeled as an ideal gas litenit has following feateres.
1.) It has no intermatecular frices of attraction (er) repulsion
2) at does not change its phage during a thermodynamic proxs.
3) at dbeys Boybes, charles lals and the charactalstic gos equation.

The internd emergy of gases decreages sapidly with decreseing presgure and disafpears cshen, abodite presgure approaches zen. At zero pressece, all seal gayes behave in a similar manner and the state of Identical behalivir is cialled ideal slinte.
Ideal goss:- In actual practice, no gas is completily idel gat, but many geses treated as an ided gage like Alr, Nitrogew, olygow; hydrogew, telicim, argow, heow, kryptow, carban dioxide.
Boglestals:- rolume ord speafic vdareof a gas livessely propational to alsolite proface $v \alpha \frac{1}{\phi}<\infty \quad P V=$ constant: if a ges charges its stete charle lalr:-

The specific volure \hat{H} directly propstiand to absolute temperatere.
 Equation of 8tate:- at is obsorvid that Hermodyramic propates ane interselatad. Ary equation that selates the pressune, tempenteve and specific yolume of a substance is knowin an equation of state.
\& $(p, v, T)=0$ (v) $p=f(\nu, T) ; \nu=f(p, T) \propto 0 \tau-f(p, v)$. character'stic gas equation!- In any Hermodynanic system of in idal gof, The pressue, tempenterre and specific volume vary simultaneaify. On the loasis of thes characteristic, an equation is derived loith the telpis Boylis and charles lals.
soyles law $v \propto \frac{1}{p}$ usten $T=$ cardiant
charles latr, $v \propto \tau$ uten $p=$ corstant
By combining eath selatios, $v \propto \frac{T}{p}$ © $v=\frac{R \cdot T}{P}$

\checkmark (or) $P V=m R T \rightarrow V=$ volumnofa gas.
(or) $P V=n R_{4} T \rightarrow$ Leve $n=N o \cdot$ ofndes ofagn $=\frac{m p l}{M A N L}$
$R_{x}=8314$ J/ Kondik.
The relationstip Between two principle spegifictedty
a penteot gss: set us casider a peryect gas being heated charnctafic ges candunt or stan a kempentoure T_{1} to T_{2} at castant pregene.
Froma non-blar equation $Q=\Delta u+W$

$$
Q=\left(u_{2}-u_{1}\right)+p d v
$$

$\therefore C_{P}-C_{V}=R$ on dividing both side by $C V$,

$$
\frac{C R}{C_{V}}-1=\frac{R}{C_{V}} ; C_{V}=\frac{R}{\left(\frac{C_{P}}{C_{V}}-1\right)}=\frac{R}{\gamma-1}
$$

$$
\text { similarly } \frac{C_{p}}{C_{p}}-\frac{C_{V}}{C_{P}}=\frac{R}{C_{p}} ; 1-\frac{1}{r}=\frac{R}{C_{p}}
$$

$$
\therefore \quad C P=\frac{c R}{(r-1)}, \quad \therefore \frac{C P}{C r}=\gamma
$$

The thermodynamic propecttes for a pusect ges are relatal as
$\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{2} v_{2}}{T_{2}} \cos \frac{t_{2}}{T_{1}}=\frac{p_{2} v_{2}}{p_{1} v_{1}}$-(1)
Filan igentropic process, $p V^{\gamma}=c$ cov $p_{1} v_{1}^{\gamma}=p_{2} k_{2}^{\gamma}$

$$
\begin{aligned}
& r_{2 c} \text { cov } p_{1} v_{1}^{r}=p_{2} k_{2}^{\gamma} \\
& \frac{v_{2}}{v_{1}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{\gamma}}=\left(\frac{p_{2}}{p_{1}}\right)^{-\frac{1}{r}} \text {-(2) }
\end{aligned}
$$

gabstitute (2) in (1) $\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{r_{1}}\right)\left(\frac{v_{2}}{v_{1}}\right)=\left(\frac{p_{2}}{p_{0}}\right)\left(\frac{p_{2}}{r_{1}}\right)^{\frac{-1}{r}}=\left(\frac{p_{2}}{p_{1}}\right)^{1-\frac{1}{r}}=\left(\frac{p_{2}}{p^{\prime}}\right)^{\frac{r-1}{r}}$
$\therefore \frac{r_{2}}{r_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{r-1}{r}}$
similarly; $i_{i s} \quad p_{1} v_{1}^{r}=p_{2} v_{2}^{r} ;\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{v_{1}}{v_{2}}\right)^{r}$-(3) sulsituste (3) in (1) $\frac{T_{2}}{\pi}=\left(\frac{p_{2}}{r_{1}}\right)\left(\frac{r_{2}}{v_{n}}\right)=\left(\frac{v_{1}}{r_{2}}\right)^{r} \cdot\left(\frac{v_{2}}{v_{0}}\right)=\left(\frac{v_{1}}{v_{2}}\right)^{r} \cdot\left(\frac{v_{1}}{v_{2}}\right)^{-}$ $\therefore \frac{\frac{r_{2}}{n}=\left(\frac{v_{1}}{v_{2}}\right)^{r-1}}{}$
Wikdae durize Adiabate proegs the witkdoe duving a
non-blar procis \& expresed es $\int_{1}^{2} p d v=\int_{1}^{2}\left(\frac{c}{v}\right) d v=c \int_{1}^{2} v^{-r} d v$

$$
=c \cdot\left[\frac{v^{-r+1}}{-r+1}\right]_{1}^{2}=\frac{c \cdot v_{2}^{-r+1}-c \cdot v_{1}^{-r+1}}{-r+1}=\frac{B_{1} v_{1}-p_{2} v_{2}}{r-1} \cdot \frac{m R\left(r_{1}-v_{1}\right)}{r-1} \text {. }
$$

Eaindions for chare of entrofy of an ided ges 1 -

 be heated to $P_{2}, V_{1}, T_{2}, S_{2}$ rejpectindy. By lavsit congeuntion of evary gurte grating onbdth sids, $\int_{1}^{2} d s=c v \int_{1}^{2} \frac{d T}{T}+R \int_{1}^{2} \frac{d v}{v}$

| $S_{2}-S_{1}$ | $=C_{1} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{2}}$ |
| ---: | :--- |$\rightarrow(T, V)$-(1)

$$
\begin{align*}
& =q \ln \frac{p_{2}}{p_{1}}+(q+R) \ln \frac{v_{2}}{v_{1}} \\
S_{2}-s_{1} & c_{r} \ln \frac{p_{2}}{p_{1}}+c_{p} \ln \frac{v_{2}}{v_{1}} \rightarrow\left(s_{1} \times\right) \\
S_{2}-s_{1} & c_{p} \ln \frac{p_{2}}{T_{1}}+R \ln \frac{p_{1}}{p_{2}}\left(\tau_{1} 0\right)
\end{align*}
$$

similarly
(PROB 1.5 kgs of air at passive of 6.75 boor occupies a volume of $0.23 \mathrm{~m}^{3}$.
 heat absorbed (or rejected by the air for each of the following methods of trying et the process 'i) sosthermally (ii) Adiabatically.
mow Mass of air, $m=1.5 \mathrm{kgs}$.
Initial pressure of air,$P_{1}=6.75 \mathrm{bar}=6.75 \times 10^{5} \mathrm{pa}$. p Initial volume of air, $V_{1}=0.23 \mathrm{~m}^{3}$.
Final volume of $a_{1}, v_{2}=.1 .13 \mathrm{~m}^{3}$.
(i) geothermal prows

To find dined pressure, $t_{2} ; \quad p_{1} v_{1}=t_{2} V_{2}$ in ssotionmel proves. $P_{2}=\frac{P_{1} v_{1}}{v_{2}}=6.75 \times 10^{5} \times \frac{0.23}{1.13}=1.37 \times 10^{5} \mathrm{pa}$.
Lidzedone, $W_{1-2}=p_{1} V_{1} \ln \left(\frac{V_{2}}{v_{2}}\right)^{V_{2}}=675 \times 10^{5} \times 0.23 \ln \left(\frac{1.13}{0.23}\right)=247.11 / 1 / \mathrm{kg}$. Taal Noikdare, $W_{1-2}=$ mass $\times W_{1-2}=1.5 \times 247.14=$
370.71 kJ 人

(ii) Adiabatic process

Fol an Adinbate process, $Q=0$.
Pres. A gas ocapies $0.034 \mathrm{~m}^{3}$ at 600 KPa and $85^{\circ} \mathrm{C}$. st is expanded tithe non- flow process according to the law pr ${ }^{1 / 2}=$ constant to a pressing of 60 kPa after which it is heated at constant pressure back to it original tempersiere. Sketch the prices on p-rand T_{-1} diagsen and calculate the chore process the woke dare, the heat trausfened.

Take
$C_{0}=1.047 \mathrm{~kg} / \mathrm{sk}{ }^{\dagger}{ }^{\dagger}$
$c=0.775 \mathrm{~kJ} / 19 \mathrm{kK}$ rake, $c_{T}=1.047$ and $c_{V}=0.775 \mathrm{k} \mid \mathrm{l} / \mathrm{k} \mathrm{k}$ fo the gas.

$$
\text { process }(1-2) p_{r}^{1.2}(p-v) \rightarrow v
$$

Give,
$t_{1}=600 \mathrm{k} / \mathrm{a}=600 \times 10^{7} \mathrm{pa}$ $v_{1}=0.034 \mathrm{~m}^{3}$
$\pi=85+273=3,58 \mathrm{~K}$
$p_{2}=60 \mathrm{kPa}=60 \times 10^{3} \mathrm{~Pa}$
$B_{3}=1_{2}$
$n_{3}=\pi_{1}=8520358 \mathrm{~K}$
$P_{1} v_{1}{ }^{1 \cdot 2}=F_{2} v_{2} v_{2}^{1 \cdot 2}$
$v_{2}=v_{1}\left[\frac{1}{12}\right)^{y_{102}}=0.034\left[\frac{600 \times 10^{3}}{60 \times 10^{3}}\right]=0.231 \mathrm{~m}^{3}$.
$W_{1-2}=\int_{1}^{2} p a v=\frac{p_{1} V_{1}-P_{2} V_{2}}{n-1}=\frac{600 \times 10^{3} \times 0.034-60 \times 10^{3} \times 0.2316}{1.2-1}=32,520 \mathrm{~J}=32.52 . \mathrm{kJ}$
$Q_{1-2}=\frac{\gamma-n}{\gamma-1} \times \omega_{1-2}=\frac{1.4-1.2}{1.4-1} \times 32.52=1626 \mathrm{~kJ}$.

$$
\begin{aligned}
& \frac{p_{2} v_{2}}{T_{2}}=\frac{r_{3} v_{3}}{T_{3}} ; \quad \frac{v_{2}}{r_{2}}=\frac{V_{3}}{\sqrt{3}} ; V_{3}=\frac{T_{3}}{T_{2}} \times v_{2}=\frac{\pi}{T_{2}} \times V_{2} \\
& v_{3}=\frac{\pi}{12} \times V_{2}=\frac{358}{5} \times 0.2316=0.3398 \mathrm{~m}^{3} .
\end{aligned}
$$

worecdone in the process (2-3) carstent pregere process

$$
\begin{aligned}
& W_{2}-3=P_{2}\left[v_{3}-r_{2}\right]=60 \times 10^{3}\left[0.3398-0.231 \frac{1}{3}\right]=6492 \mathrm{~J}=6.492 \mathrm{~kJ} . \\
& Q_{2}-3=m C_{p}\left[T_{3}-T_{2}\right]=1 \times 1.047^{12}[358-244]=119.35 \mathrm{~kJ}
\end{aligned}
$$

\therefore Total wBikdone, $w_{1-3}=w_{1-2}+w_{2-3}=32.52+6.492=39.01 \mathrm{~kJ}$
Taal Heat trousfoned, $Q_{1-3}=Q_{1-2}+Q_{23}=16.26+11.9-35=135.61 \mathrm{~kJ}$
[Pes]. A gas in a cylinder fitted with a piston undergoes a cycle composed of three process. First, the gas expands at constant pressure with a heat addition \& 42 kJ and a work output of 12.0 kJ . Then it is coded at constant volume by a removal of 48 kJ of teat. Finally, an adiabatic process riestsus the gas to is initial state. Determine,
a) The work of the adiabatic process
b) The stored every of the gas at each of the chen two stater if is stored rang in the initial state is assigned the value of 3 ens.
[SD] process: $(1-2)$ constant presence process:-
Heat addition, $Q_{1}-2=42.0 \mathrm{KJ}(+$ me, heat added)
work output, $w_{1}-2=12.0 \mathrm{~kJ}$ to System goes.
process (2-3) carstont volume prows
Heat removed, $a_{2-3}=-48$ kI $\sum-v e$, die to heat removed than syperm.

From poses (1-2) $Q_{1-2}=\Delta U_{1-2}+w_{1-2}$.

$\therefore \Delta U_{1-2}=Q_{1-2}-W_{1-2}=42-12=30 \mathrm{~kJ}$.
prom process (-3) $\quad Q_{2-3}=\Delta U_{2-3}+W_{2-3}=\Delta U_{2-3}+0 \cdot\left[\because W_{2}-3=0\right.$ S n Castand-where].

$$
\therefore Q_{2-3}=\Delta U_{2-3}=-48 \mathrm{~kJ} .
$$

From process (3-1) Adiakalc wat props
$Q_{3-1}=0$ fo adulatic process.
For. Cyclic process \sum Fa three thermadynuic procured $\left.1-2,2-305-1\right]$

$$
\begin{aligned}
& \oint_{W_{1-2}} \delta W=W_{2-3}+W_{3-1}=Q_{1-2}+Q_{2-3}+Q_{3-1} \\
& 120+0+W_{3-1}=42+(-48 \cdot 0)+0
\end{aligned}
$$

$\therefore W_{3-1}=$ Adiabatic Lat k $=-18 \mathrm{~kJ}$ [Wok A dare on the.
From process (3-1)

Pron procos(23)

$$
\begin{aligned}
& Q_{3-1}=W_{3-1}+\Delta U_{3-1} \\
& \therefore \Delta U_{3-1}=Q_{3-1}-W_{3-1}=0-(-18)=18 \mathrm{~kJ} . \\
& Q_{2-3}=W_{2-3}+\Delta U_{2-3} \\
& \Delta U_{2-3}=-48 \mathrm{~kJ}
\end{aligned}
$$

Since, $L_{1}=0$ (glen) $\therefore U_{2}-U_{1}=30 \mathrm{KJ} ; U_{2}=30 \mathrm{~kJ}$

$$
\begin{aligned}
& \text { Since, } U_{1}=O \text { (ginent) } \quad \therefore \quad U_{2}=-48+U_{2}=-48+30=-18 \mathrm{~kJ} . \\
& \Delta U_{2-3}=U_{3}-U_{2}=-48 \mathrm{~kJ} ; \quad
\end{aligned}
$$

Real Ganges:- The ideal gas equation of state, $P v=R T$ can be used with the assumption of no attraction (ar) vary little attraction free of molecule witt in the gas and the volume of mole culls is negligibly small compared to volume of gods.
For many gases, at very low pressure es high tompenture, the force of attraction and volume of molecules. Compared to volume of gas one 8 mall and real gases ob by very close to idled gas equation.

But at higher pressure, the forces of attraction and volume of molecules are higher (appreciable). Then., the real gas behaviour deviates fum ideat-gro behavior.

Compressibility factori-(2)

The slight modification in the ideal gas equation ($p v=R T$)
of state to fit real-gos betalisar witt introduction g. "correction factor (2) is called compressibility factor (2). ats. Defined is

$$
\begin{aligned}
& \text { to fix real- compressibility factor (z). ats. defined as } \\
& \text { lulled }=\frac{p v}{R T}=\frac{p}{\text { Volume as predicted by idea es equation }}=\frac{p}{R T} .
\end{aligned}
$$

For an ideal $g s, z=1$.
For a real gas z is a function of pressure and tempontever.
The seal gees behave differently at a gill tempentwe and preserve, but they behave very closely at their seduced presume and reduced timperstere.

Reduced pirgoue, $P_{R}=\frac{P_{\text {actual }}}{\text { Pcritial }}=\frac{p}{P_{C}}$

Reduced speafic. volume, $v_{R}=\frac{v_{\text {actual }}}{v_{\text {axitici }}}=\frac{v}{v_{C}}$
Dis advantage of Compresibilits chat factor chat:- That a separate chap: is needed for each gas. But at the same reduced ce-dedinder, the compropebits factor 2 is approximately same foe all gases. at s called laws of corrapinding stater. Thus $v_{R}=f\left(P_{R}, T_{R}\right)$. comprepubchits factors

$$
\begin{aligned}
Z & =\frac{P V}{R T} \text { iN idea gs } \\
Z & =\frac{P_{c} V_{2}}{R_{C}} \times \frac{P_{\lambda} V_{2}}{T_{\lambda}} \\
& =Z_{C} \times \frac{P_{1} V_{2}}{T_{r}} \rightarrow \text { Fo red l gas. }
\end{aligned}
$$

This choorts woeful phon to propaties
of the gas at critical point are kinin. The deviation of the real gates this ideal gases can be known by the chat. Accurag is $\pm 5 \%$ by this Chart. if the compressibielty factor io is less than unity, the gas is mac compressible
than perfect gas.

Vander Waite' Equation.- on 1873, I.D. Vander Waal's presented an equation of state which wee of interest on physical reagoning, introduced two correction constants in the equation of ideal gas equation of state.

$$
\left(p+\frac{a}{v^{2}}\right)(\bar{v}-b)=R_{u} T .
$$

where $v=$ molar volume in $\mathrm{m}^{3} / \mathrm{Lg}$ ind
$R_{u}=$ uniluesel grecorstant $=8.314 \mathrm{~kJ} 1 \mathrm{~kg} \mathrm{mdk}$.
The constant ' a ' was introduced to account for the existence of intermolecular attraction, the constant ' b ' was introduced to account for volume of molecules and $R u$ is universal gas constant. These Constants are evaluated from the behaviour of the gas at critical point.

$$
\frac{R u \tau_{c}}{f_{c} \bar{v}_{c}}=\frac{8}{3} .
$$

Excoptat higher freefsumes, the real gives donot obey vandernbalis equation in all range propenes and teriperateurse. Despite of its limitations, the Vander wails equation has historical importance because it wee the first attentpt to model the behavior of seal gases.
Prong Determine The presume of air at $199^{\circ} \mathrm{C}$ having a speafic volume do $0.00295 \mathrm{~m}^{3} / \mathrm{kg}$ by means of
(i) Ideal gas equation (2) Vader Waal's equation

Take, $a=135522 \mathrm{Nm}^{4}\left|\mathrm{l} \mathrm{kg}-\mathrm{mde}^{2}, \quad b=0.0362 \mathrm{~m}^{3}\right| \mathrm{kg}$-mode, $k=8314 \mathrm{~J} / \mathrm{ig}-\mathrm{mdk}$.
sol Let: $p=$ pressure of air.
$T=$ Temperature of air $=190^{\circ} \mathrm{C}=190+273=463 \mathrm{~K}$.
$v=$ specific volume of air $0.00295 \mathrm{~m}^{3} / \mathrm{Kg}$
$R_{u}=$ Universes gas constant of air
aider waal's equation constants are

Take mbecular weight of air, $m=29$.
Ideal gas equation, $P V=0 n R T$. perfect gas equation.
$\Rightarrow P v=R T[$ Where,$\dot{v}=$ specific volume $=$ volume $/$ mos $]$]

$\therefore p=\frac{R_{u} \times T}{V \times M}=\frac{8314 \times 463}{2.9 \times 0.00295}=\frac{44.996 \times 10^{6} \mathrm{~N} / \mathrm{mi}}{10^{2}}=\frac{44.996 \times 10^{6}}{10^{2}}=449.9 \mathrm{han}^{2}$ Vanderwaal's equatrowi-

$$
\begin{aligned}
& \left(p+\frac{a}{v} r\right)(\bar{v}-b)=R_{u} \cdot T \quad[\bar{v}=v \times M=0.00295 \times 29] \\
& \therefore p=\frac{R_{u} \cdot T}{\bar{v}-b}-\frac{a}{v^{2}}=\left[\frac{8314 \times 463}{0.00295 \times 29-0.0362}-\frac{13522}{(0.00295 \times 29)^{2}}\right] \\
& =780 \times 10^{5}-180 \times 10^{5}=595 \times 10^{5} \text { par. } \\
& \therefore p \text { jussive, } P=\frac{595 \times 10^{5}}{105}=595 \text { bur }
\end{aligned}
$$

PROB Determine the presgue of 2 mbles of air at $400^{\circ} \mathrm{C}$ with a total volume of $0.5 \mathrm{~m}^{3}$. use the ideal gos law and Vander waals law.
(SOL) Let $p=$ pressue of air; $n=$ No. of mdas of alr $=2$ $T=$ Tempenatere of air $=400^{\circ} \mathrm{C}=400+273=673 \mathrm{~K} ; V=$ rotal volume $R_{u}=$. universal gas constant of air $=8314$ J1.kg-mole K .
Vanderwalls equation constants, fl alr
Take $a=1.368$ bar $\left[\frac{\mathrm{m}^{3}}{\mathrm{k} m d}\right]^{2}: b=0.0367 \mathrm{~m}^{3} / \mathrm{knd}$

Ideal gas equation $p V=n \cdot R_{u} T$
pinesfore of air, $p=\frac{n \cdot R_{u} \cdot T}{V}=\frac{2 \times 8314 \times 673}{0.5}=22,381,288 \mathrm{~N} / \mathrm{w}$

$$
p=\frac{22,381288}{105}=223-81 \text { bar }
$$

VanderWaal' equatiou;

$$
\left(p+\frac{a}{\bar{v}^{2}}\right)(\bar{v}-b)=R_{u} \cdot T
$$

where $\left.\bar{v}=\frac{V \text { (rotal voume) }}{n \text { (No.0f:moles) }}=\frac{0.5}{2}=0.25 \mathrm{~m}^{3} \right\rvert\, \mathrm{kg}$ mol.
Pressive, $P=\frac{R_{u} \cdot T}{(v-b)}-\frac{a}{v^{2}}=\frac{8314 \times 673}{(0.25-0.0367)}-\frac{1.362 \times 10^{5}}{0.25)^{2}}$

$$
\begin{aligned}
& =26,232,1700-2,188,800 \\
& =24,043,370 \mathrm{~N} / \mathrm{m}^{2} \\
& =240.43 \mathrm{bon}
\end{aligned}
$$

Find the modecular weight and gas constant for the g as whofe specifte theds are as follons. $c_{p}=1.967 \mathrm{~kJ} / \mathrm{kg} K, c_{V}=1.507 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Fon. Given that, $C_{p}=1.967$ koikg and $C_{r}=1.507 \mathrm{~kJ} / \mathrm{kgk}$.

Wekno, G as congtant, $R=C P-C V=1.967-1.507=0.46 \mathrm{KJ}$ 价K.
we knowr enivisal gos cordant, $R_{u}=8.314 \mathrm{~kJ} / \mathrm{kgK}$ \therefore Midecular weightof the gas, $\mu=\frac{R_{u}}{R}=\frac{8.314}{0.46}=18.07 \mathrm{~kg} 1 \mathrm{~kg}$ and
(PRaB. $0-3 \mathrm{~mm}^{3}$ of oir at pressene 8 baors onpunds to $1.5 \mathrm{~m}^{3}$. The final priegeuve is 1,3 bar. Aosuming the expansion to be polytropic, calculate the heat scipplied and change of internal evegg, gake, $r=1.4$
sol. We knar on polytritic expanalan procas, $p v^{n}=c$ $p_{1} v_{1}^{n}=p_{2} v_{2}^{n} ; \quad \frac{p_{1}}{p_{2}}=\left(\frac{v_{2}}{v_{1}}\right)^{n} ; n=\frac{\log _{e} p_{1} / p_{2}}{\log _{2}=\frac{v_{2}}{v_{1}}}$ $\therefore n=\frac{\log _{e} 8 / 1.3}{\log _{c} 1.5 / 0.3}=1.129$
(i) Heat suppliked, $Q=\frac{\frac{r-n}{r-1}}{x} \times \frac{2 v_{1}-p_{2} v_{2}}{n-1}=\frac{(1.4-1.129)}{1.14 .-1} \times \frac{\left(8 \times 10^{5} \times 0.3-1.3 \times 10^{5} \times 1.5\right)}{1.129-1} \underbrace{}_{-v_{1}} \rightarrow v \quad v_{2}$ $=236340 \mathrm{~J} / \mathrm{kg}=23.63 \mathrm{~kJ} / \mathrm{kg}$.

Change in sitaral ergs; $\Delta u=c_{2}\left[T_{2}-T_{1}\right]$

$$
\left[c_{v}=\frac{R}{\gamma-1}\right]
$$

$$
=-112.5 \mathrm{~kJ} / \mathrm{kg}
$$

PRes.. A tank of volume $1.3 \mathrm{~m}^{3}$ is belied with argon gas at 6 bar and $260^{\circ} \mathrm{C}$. If the gas with in the tank changes its state isentropically when it flans sham the tank until the pressure drops to the atmospheric pressure of 1 loar , determine the mass of the gas that has left the tank during the procarp.
SoL. Verdure, $V_{1}=1.3 \mathrm{~m}^{3}$, pressing, $P_{1}=6$ bar temponative, $J_{1}=260^{\circ} \mathrm{C}=533 \mathrm{~K}$
pressure, $\beta_{2}=1$ bar
The gist claus isentropically from 6 bar t. I bor.

to $p_{2} v_{2} \tau_{2}$

From the expansion process of the gas tom state 1 to strode 2 igentroppricily, Le have, $\frac{D_{2}}{\pi}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} ; T_{2}=T_{1}\left(\frac{p_{2}}{\sigma_{2}}\right)^{\frac{\gamma-1}{r}}=533\left(\frac{1}{6}\right)^{\frac{0.4}{1-4}}=319.44 \mathrm{~K}$.

Asscime R for argon $=0.2081 \mathrm{KJ} / \mathrm{kgK}$

$$
p_{1} v_{1}=m_{1} k T_{1}
$$

-rikial mass, mil $=\frac{P_{1} v_{1}}{R T_{1}}=\frac{6 \times 10_{1} 5 \times 1.3}{0.200 \times 10^{3} \times 533}=7.0322 \mathrm{kgs}$.
Finales, $m_{2}=\frac{P_{2} V_{2}}{R T_{2}}=\frac{1 \times 10^{5} \times 1.3}{0.2081 \times 319.744}=1.9556 \mathrm{kss}$.
mass of the gas which left the tank during the process, $n=2 r^{-m 2}$ $=7.882-1.9256$ $=50766 \mathrm{kx}$.
PRes Show then $C_{P}-C_{V}=\frac{B^{2} T V}{K}$
soc From Floss law of Theemodyrimics, $d Q=d u+p d v$.
once we may write, $u=\phi(T V)$.

$$
\begin{gathered}
d u=\left(\frac{\partial u}{\partial v}\right)_{V} \cdot d \tau+\left(\frac{\partial u}{\partial v}\right)_{T} \cdot d v \\
\therefore d Q=d u+p d v=\left(\frac{\partial u}{\partial T}\right)_{V} \cdot d \tau+\left\{p+\left(\frac{\partial u}{\partial V}\right)_{T}\right\} d v=a d T+\left\{t+\left(\frac{\partial u}{\partial v}\right)_{T}\right\} d v .
\end{gathered}
$$

This is true for any reveribleprocass, and so, for a reversible constant passive
process, $d Q=c_{1}(d \tau)_{p}=c_{v}(d \tau)_{p}+\left\{p+\left(\frac{\partial u}{\partial v}\right)_{T}\right\}(d v)_{p}$
Hence, $\quad C p-C V=\left\{p+\left(\frac{\partial u}{\partial V}\right)_{T}\right\}\left\{\frac{\partial V}{\partial T}\right\}_{p}$
From hendhz function: $\left.d F=-s d T-p d v ;\left(\frac{\partial p}{\partial T}\right)_{v}=\left(\frac{\partial s}{\partial s t}\right)_{T}=\frac{1}{T} \cdot\left\{++\frac{p y}{\partial v}\right)\right\}$

$$
\text { from } \beta=\frac{1}{2} \cdot\left(\partial V C_{p}-C_{V}=T \cdot\left(\frac{\partial F}{\partial T}\right)_{V} \cdot\left(\frac{\partial V}{\partial T}\right)_{p}\right.
$$

from $\beta=\frac{1}{2 v} \cdot\left(\frac{\partial v}{\partial q}\right)_{p} ; K=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{r}$; we hale $c_{p}-c_{v}=\frac{\beta^{2} T v}{K}$

$$
\begin{aligned}
& \Delta u=\frac{R}{\gamma-1} \times\left(T_{2}-T_{1}\right)=\frac{R T_{2}-R T_{1}}{\gamma-1}=\frac{P_{2} v_{2}-P_{1} v_{1}}{\gamma-1} \\
& =1 \times 26 \frac{1.3 \times 10^{5} \times 1.5-8 \times 10^{5} \times 0.3}{1.4-1}=-112,500 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Second Law of Thermodynamics UNIT- III
The second law of thermodynamics recognises that the mutual conversion of heat into usk during a process is impossible, chile its opposite is possible [complete conversion of work in to heat is plsille].

Heat Engine:- A heat engine is a device used for converting heat energy in to mechanise heat energy (Q1) flow high temperature Segeulor at temperature T_{1} is supplied to the engine. After doing $\omega \mathrm{D}_{\mathrm{K}}\left(\omega_{E}\right)$, a part of the heat energy is Dejected tD sink con low tompenteve regenvor.

Heat pump:- A heat pump is device used for to transfer heat flem atimsphere [codd]at temperature T_{2} to hot body (space at T_{1}) with the help of mechanical pump.
The performance of teat pump is expressed by the coefficient of performance (COP).

$$
\text { I the coefficient of presflmance (SOP) }=\frac{\text { Amount of heat delivered (Q) }}{\text { Amount of Work supplied top pip (} W 0)}=\frac{Q_{1}}{Q_{1}-Q_{2}}=\frac{T_{1}}{T_{1}-T_{2}}
$$

Relligerator:- A refligenator is a revered heat englue which either cool (or) maintain the temperature lower than the tempenswe of surrandings. This $\&$ done by extracting heat $\left(\mathrm{O}_{2}\right)$ tron cold body and rejecting heat to the Atmosphere $\left(Q 1+w_{R}\right)$
 with the help of mechanical work

$$
\begin{aligned}
& \text { supplied to rebrigendov. } \\
& \text { - (C.O.P) } R=\frac{\text { Amountof heat taken (tom od bod dj }\left(Q_{2}\right)}{\text { Ament of Wis. Tracuined (WR) }} \\
& (C O P)_{\text {Runs }}=1+(C O P)_{\text {Repisum }}=\frac{Q_{2}}{W_{R}}=\frac{Q_{2}}{Q_{1}-Q_{2}}=\frac{T_{2}}{T_{1}-T_{2}} \\
& \text { oof yam. . }
\end{aligned}
$$

Statements of the second LaLoof Thromodynamis
Kelvin-planck statement:- at relates the working of heat engines.
(It is impossible to construct an engine which while operating in a cycle, produces no other effect except to extract. He heat blow a single temperature regenvols and do equivalent amount of worker.
According to the kelvin-plankk statement, a heat engine car not be 100 percent efficient. In practice, no teat engine can convert all heat supplied to refuel work. The heat engine receives heat flam a high temperature regenofr and it must reject some amount of heat to a low-tempenature regenvoir. The wirkdone by a cyclic heat engine is the difference between heat supplied and hos heat rejection, perpetual motion machine of the second kind (PMM-II).-

A 100\% percent. efficient machine, which is impossible to obtain in actual practice, because no machine can convert ishole of the heat energy supplied toint, into its equivalent amount of work. A PMM-II is
 impossible.
clausius Statement:-
st relates the wowing of the reffigenatoss and heat pumps.
"ot is impossible for any device that operates in a cycle, and produce no effect otter than the transfer of heat energy blow a lower temperative body to ohighou stempentare The heat energy can not flaw by itself stoma. body." low-tempenaterre body to a high-tempenatione body without addition of work.

Refrogentors and heat pumps. transfoii energy blum a low-temperature region to a higher temperature region at the cost of work input to their Compressors.

Equivalence of Kelvin-planck and clausius statements:-

Any device that vidites one statement, also leads to vidation of the other statement.
consider a heat engine (PMMZ) and an actual refligerator, operating between a high temperature $T_{1} \&$ Lastemperative T_{2}.
The heat engine is receiving heat Q_{1}, than high tempenteve regenvor at T_{1} and it converts all heat in to net work $W=Q$, ot dos not traject any arionet he heat to low temperative regenvor, this vidating the Kelvin -planck state rent of second law.

The woRth produced by heat argue is Supplied to a Pelligentor (Heat Pump) that removes heat Q_{2} and dysenorges $\left(Q_{1}+Q_{2}\right)$ to hightempentere reservoir. off the refrigerator and heat engine trgettier constitute a device, th se sole effect to transfer heat every O_{2} to a high tempont eve rigenkidr $\left(Q_{2}+Q_{1}\right)$. This device clearly violates keluin-planck staterveit beds to vidationof clausius statant.
This device
Figure (b) shows virtationd clansinis staterint leads to vidation. of kelvin planck statement.

* Carnot cycle, (o) Carnot Engine:-

A blench engineer, sadi carnot in 1824 proposed an engine which works on a revered cycle it is Theoriticully a heatengive that converts the maximum amount of energy in to mechanical walk. corist showed that the efficiency of any eigine depends on the difference between the highest temperature and lowest tempertive reached during ore cycle. The greater the teriperature difference, higher the efficient.

It comprises four reversible processes given below.
(1) Reversible geothermal expansion (2) Reversible adiabatic expusian
(3) Reversible ssothermal Compression (4) Peversilale adiabatic Compression.

Carnot hyde Assentrions

1) Working substance is perfect gas.
2) piston movement in cylinder is frictionless.
3) Walls of cyluder 8 piston are perfectly ongultad.

4) Heat syprely and Heat criection are at constant tempertares
S) cylinder head is very good conductor of heat and partially perfect insulator.
 is brought in contact with bottom (B) of the cylinder. The air expands partially at constant tanpenture process (1-2).

Heat supplied, $Q_{1-2}=\therefore \because$ wolkdone by air during isothermal explanation.

$$
=\phi_{1} v_{1} \ln \frac{v_{2}}{V_{1}}=m R T_{1} \ln \frac{V_{2}}{V_{1}}=m R T_{1} \ln \dot{R}^{\prime} .
$$

2. Second stage [Adiabatic oxpangion], The hot body is removed boom the bottom of the cylinder B and the insulating cop B brought him contact. The air now allowed to expand reversibly and-adedadicdly. process (2-3). No heat supplied The tempertive folly than T_{2} to T_{3}. So, decrege in entered every $=$ work doe by air dirrizg adiab α

$$
=\frac{P_{2} v_{2}-E_{2} v_{3}}{r-1}=\frac{\operatorname{me}\left(T_{2}-T_{3}\right)}{r-1}=\frac{m R\left(G_{1}-T_{3}\right)}{r-1}
$$

3. Third stage [isothermal compression]
pemove the orgulaing cap bland bottom of cylinder and bring the cold body in its contact. The air is compressed at Constant. tempertere $T_{3}=T_{4}$. Dining Thy process, heat is rejected to'. Cold body

Heat rejected $=$ works dove on air during isothermal conpmovion

$$
Q_{3-4}=P_{3} r_{3} \ln \frac{V_{3}}{V_{4}}=m R \sigma_{3} \ln \frac{V_{3}}{V_{4}}=m R r_{3} \ln x:
$$

where, $r=$ Compressia ratio $=$ Expangiai notion, $\frac{v_{2}}{v_{1}}=\frac{v_{3}}{V_{4}}$.
4. Fourth stage:-CAdiabatic compressions) Now insulating cap i brought in contact witt bottom of cylinder, and air is allowed to be compressed adelantially sancreage in intend energy due to hiclose is terpertane than T_{4} to T,
oncreage in internal evergy $=$ wirkdone on air during adiabatic

$$
=\frac{R_{1} v_{1}-p_{4} v_{4}}{r-1}=\frac{m R\left(T_{1}-T_{1}\right)}{r-1}=\frac{m R\left(T_{1}-13\right)}{\gamma-1}
$$

\therefore Efficiengy of carnot cycle $\eta_{\text {carnt }} \frac{\text { Woikdone }}{\text { Hearsupplied }}=\frac{\text { Heatsyplid-Hestriccted }}{\text { Hear-supplied }}$

$$
\begin{aligned}
& =\frac{m R T_{1} \ln '{ }^{\prime} 2}{I_{n} R T_{1} \ln n^{\prime} r_{3}^{\prime} \ln r^{\prime}} \\
& =\frac{T_{1}-T_{3}}{T_{1}}=1-\frac{T_{3}}{T_{1}}=1-\frac{T_{L N}}{T_{H i g h}} .
\end{aligned}
$$

Altenatike prisf:comprossia.

Heat supplied duming isatteond axpangion 1-2, $Q_{12}=T_{1}\left(S_{2}-S_{1}\right)$
Heat rejection durirg isottermal Comprefiour $3-4, Q_{3}-4=T_{3}\left(S_{2}-S_{1}\right)$

$$
\eta_{\text {cant cycle }}=\frac{H \cdot S-H \cdot K}{H-S}=\frac{\pi_{1}\left(-S_{2}-S_{1}\right)-T_{3}\left(S_{2}-S_{1}\right)}{T_{1}\left(S_{2}-S_{1}\right)}=1-\frac{T_{3}}{T_{1}}
$$

* For adiabatic expansion 2-3,

$$
\begin{aligned}
& \text { adiabatic axparsian 2-2 }, ~ \frac{1}{\frac{T_{2}}{T_{3}}=\left(\frac{v_{3}}{v_{2}}\right)^{\gamma-1} \cos \frac{v_{3}}{v_{2}}=\left(\frac{T_{2}}{T_{3}}\right)^{\gamma-1}} \\
& \text { adiabatcc comprestion 4-1 }
\end{aligned}
$$

For adiabctic compresfion 4-1,

$$
\begin{aligned}
& \frac{T_{1}}{T_{4}}=\left(\frac{u_{1}}{\nu_{1}}\right)^{r-1} \cos \frac{\nu_{1}}{\nu_{1}}=\left(\frac{\pi_{1}}{T_{4}}\right)^{\frac{1}{\gamma-1}} \text {; 8ince } \tau_{1}=\tau_{2} \text { and } T_{3}=\tau_{4} \\
& \frac{T_{1}}{T_{4}}=\frac{\pi_{1}}{T_{3}}=\left(\frac{v_{4}}{v_{1}}\right)=\left(\frac{\pi_{2}}{T_{2}}\right)^{r-1} . \\
& \therefore \eta^{7} \text { carrat }=1-\frac{T_{3}}{J_{1}}=1-\frac{1}{r^{2}-1}
\end{aligned}
$$

Carnat Heat Engine:-
A cyclic heat engine operating on the carnat cycte: called a carnot heat engine:

For a steady flow systan, the carnot cick is represented as shown in fogure. Soprecs

$Q_{1} \rightarrow$ heat transfoved to system reversibly and isothermally
$W_{T} \rightarrow$ Workdare by Turbine
$Q_{2} \rightarrow$ heat rejected to sink at tap σ_{2}
LP P \rightarrow Wok is dove on the system by pump.
\therefore Net. Wok dove by system, $W_{\text {ret }}=w_{T}-W_{P}:$
Reversed Heat Engine:-
A reversed heat engine is operating reversibly (revenged direction) any friction.

Carnot's Theorem (or Carnot principle:
(1) No engine can be mss efficient than a reversible engine operating between the same two regervoins carnot (reversible) engine among all the engines is the onst efficient s
(2) The efficiency of all reversible heat engines operating between. The same two temperatione segervoiss ans the same.
two cyclic heat engines $H E_{A}$ de rE N source and sink, of which $H E_{B}$ is reversible.

HEA \& HEB are two engines operating. between the given source at tempTs and $8 \ln k$ at temp T_{2}.

Let HEA be any heat engine and $H E_{B}$ be any reversible heat engine. we have to prove efficiency of $H E_{B}$ \& more than that of $H E_{A}$. Let $2 s$ assume that $\eta_{A}>\eta_{B}$.
Set the rater of working of the engines be. such that

$$
Q_{1 A}=Q_{1 B}=Q_{1}
$$

- since $\prod_{A}>\eta_{B}$

$$
\begin{aligned}
& A=Q_{1 B}=W_{A}>W_{B} \cdot\left[\operatorname{since} Q_{1 A}=Q_{1 B}\right] \\
& \frac{W_{A}}{Q_{1 A}}>\frac{W_{B}}{Q_{1 B}} \quad ; \quad
\end{aligned}
$$

Now, let $H E_{B}$ be reversed. since $H E_{B}$ is a reversible heat engine, the magnitudes of heat and work transfer quantities will remain the same, but their directions will be reversed as shown in figure.

since $W_{A}>W_{B}$, some port of W_{A} (equal to W_{B}). may be fed to drive the severed heat engine $\exists H_{B}$ -
Since $Q_{1 A}=Q_{1 B}=Q_{1}$, the heat discharged by $3 H_{B}$ may be supplied \rightarrow HEA. The source may therefore, be eliminated. The ret result s that $H E_{A}$ and $3 H_{B}$ together constitute a heat engine which operating sin a cycle produces ret wisc. WA $-w_{B}$ While exchanging: heat with a single regenvoir at T_{2}. This violdes the kolvin-planck statement of the second lats. Hence the assumption that $M_{A}>Y$ is $i s$ wiring. collarices of carnot Thedem:-
(1) All reversible heat engines operating betrieanite same castant tomperative limits twit have the seam efficiency. None have higher than then.
(2) The efficiency of the rennisuale carnot cycle eagle dos ant depend on the working medium. at depends only an the terpenture limits.
(3) Nor engine can be more efficient than a sieverible comotengine conch operating between the same temperature limits.
Absolute Thelmoidynamic tempeiative scale:-
A tempenture scale that \& independent of the properties Of the substances that are used to messene temperature is called Thermodynamic temperature scale+

The efficiency of any heat engine cycle receiving heat Q_{1} and rejecting heat Q_{2} is given by $\eta=\frac{W_{\text {rit t }}}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}$

By the second law, it is necessary to have a temp difference $\left(\Psi_{1}-T_{2}\right)$ to obtain efficiening for any $c_{y} c c$. we know that the efficiency of all teat engines between the same temperative levels is the same, and is independent of the working substance. Therefore, for a reversible cycle, the effecreny will depend solely upon the temperative $T 1$ and T_{2} at coven heat is transferee.

$$
\begin{aligned}
\text { ed } \dot{\eta}_{\text {rev }} & =f\left(T_{1}, T_{2}\right) \\
\frac{Q_{1}}{Q_{2}} & =F\left(\pi_{1}, T_{2}\right) .
\end{aligned}
$$

Let us consider two reversible heat engines E_{1} receiving heat boom the source T_{1} and rejecting heat tat T_{2} to E_{2} which in turn rejects heat to the sink at τ_{3} :

$$
\text { Now } \frac{Q_{1}}{Q_{2}}=F\left(T_{1}, T_{2}\right) ; \frac{Q_{2}}{Q_{3}}=F\left(T_{2}, T_{3}\right) \text {. }
$$

E_{1} and E_{2} together constitute and the heat engine E_{3} patting between T_{1} and T_{3}.

SOURCE, TI

$$
\therefore \frac{Q_{1}}{Q_{3}}=F\left(T_{1}, \tau_{3}\right)
$$

The ratio $\frac{Q_{1}}{Q_{2}}$ depends ont on T and tr 03 not on T_{3}.
$\sin k, T_{3}$
so the ratio Combe woittons, $\frac{Q_{1}}{Q_{2}}=\frac{F(T)}{F\left(T_{2}\right)}$

$$
\therefore \frac{Q_{1}}{Q_{2}}=\frac{\pi_{1}}{T_{2}} \text { Thermsdyrmic terpentare } 8 c a l \text {. }
$$

Efficiency of Reverginde heat argue

$$
\begin{aligned}
& \eta_{\text {Hatergine }}=1-\frac{Q_{2}}{Q_{1}} \\
& \eta_{\text {revarible }}=1-\frac{Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}} \quad \eta_{\text {max k }}=\frac{T_{1}-T_{2}}{T_{1}}
\end{aligned}
$$

Refligenato : $C \cdot O \cdot P=\frac{T_{2}}{\pi_{1}-T_{2}}$
Heat pung. $\quad C O P=\frac{\pi}{7-\frac{\pi}{2}}$.
[PROB] A reversible heat engine operates between $-13^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$. Calculate its C.O.P as a refligenctor and a heat pump.
sol:

$$
\begin{aligned}
& T_{1}=T_{\text {High }}=37^{\circ} \mathrm{C}=37+273=310 \mathrm{~K} \\
& T_{2}=\text { Thor }=-13+273=260 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& (C . O \cdot P)_{\text {Refrigerd }}=\frac{T_{2}}{T_{1}-T_{2}}=\frac{260}{(310-260)}=5.2 \\
& (C \cdot 0 \cdot P)_{\text {Heat pump }}=\frac{T_{1}}{T_{1}-T_{2}}=\frac{310}{310-260}=6.2 .
\end{aligned}
$$

PPOB A reversible heat engine operates between two regewrors at 420 K and 280 K if output blow the engine is 2.5 KJ . determine the efficiency of the engine and its heat interactions with heat regenuris. subsequently the engine is revenged and made to operate as heat pump between the same regents. make calculations for the cop of hent pump and power eight required when the heat transfer rote ban the 280 K regenvoir is 5 kW.

For a reversible heat engine
GOL. Given,

$$
\begin{aligned}
& T_{1}=420 \mathrm{~K} \\
& T_{2}=280 \mathrm{~K} \\
& W_{\text {output }}=25 \mathrm{~kJ}
\end{aligned}
$$

η

$$
\begin{aligned}
& \text { revers he }=\frac{T_{1}-T_{2}}{T_{1}}=\frac{420-280}{420}=0-33 \\
& \frac{13}{33} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{W_{1}}{Q_{1}} & =0.33, \\
Q_{1}-Q_{2} & =W \\
& =\frac{W}{0.33} \cdot \frac{2.5}{0.333}=7.57 \mathrm{~kJ} \\
& Q_{2}=
\end{aligned}
$$

PROB An engine wriking on carnot cycle receives 1020 kJ heat bloma heat regenvoir at a constant temp of $950^{\circ} \mathrm{C}$ and rejected heat to a heat sink at a constant tap of $30^{\circ} \mathrm{C}$. Calculate.
(i) The therand efficiency of the heat angle
(2) wilkdone.
502. Giver, $J_{1}=950+273=1223 \mathrm{~K}$

$$
\begin{aligned}
& T_{2}=30+273=303 \mathrm{k} \\
& Q_{1}=1020 \mathrm{~kJ} .
\end{aligned}
$$

(i) $\eta_{H E}=\frac{\pi_{1-} \tau_{2}}{\pi_{1}}=\frac{1223-303}{1223}=0.75$ (om
(2) Wrikdae $=\eta \times Q_{1}=0.75 \times 1020=765 \mathrm{KJ}$.

PROB A reversible heat engine operating between thermal rogeibire at 900 K and 300 K b eyed to drove a revasible refligenatio for which temperature limits are 300 K and 250 K . The engine absorbs 1800 kJ of energy as hat flam the reseuvolr at 900 K and ret output engive-refligenator system is 360 KJ . Make calculations for the heat extracted than the seflugentre and the net heat rejected to the segeulus at 300 K .
50. Given,

$$
\begin{aligned}
& T_{1}=900 \mathrm{~K} \\
& T_{2}=300 \mathrm{~K} \\
& Q_{1}=1800 \mathrm{~kJ}
\end{aligned}
$$

 For ar heat engine (HE)

$$
\begin{aligned}
& \text { For ar heat engine (HE) } \\
& \begin{aligned}
\eta=1-\frac{T_{2}}{\pi}=1-\frac{300}{900}=0.667(0) 66.7 \%
\end{aligned} \\
& \begin{aligned}
\eta=\frac{W_{1}}{Q_{1}}=0.667 ; & =0.667 \times(Q) \\
& =0.667 \times 1800=1200.6 \mathrm{k}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 1=0.667 \times\left(Q_{1}\right. \\
& =0.667 \times 1800=1200.6 \mathrm{~kJ} \quad T_{2}=300 \mathrm{~K}=T_{3}
\end{aligned}
$$

we know that, $w_{\text {net }}=w_{1}-w_{2}=360 \mathrm{~kg}$

$$
\begin{aligned}
& \therefore W_{\text {net }}=w_{1}-w_{2}=360 \mathrm{~kJ} \\
& \therefore w_{2}=w_{1}-360=1200-6-360=840.6 \mathrm{~kJ} .
\end{aligned}
$$

For a reversible reflegendor, $(C \cdot O \cdot P)_{R}=\frac{Q_{4}}{Q_{3}-Q_{4}}=\frac{T_{4}}{T_{3}-T_{4}}$

$$
=\frac{250}{300-250}=5
$$

boom $(C O P)_{R}=\frac{Q_{4}}{\omega_{2}} ; \quad S=\frac{Q_{4}}{840.6 ;} ; Q_{4}=5 \times 840.6$

$$
\begin{aligned}
& Q_{3}=Q_{4}+W_{2}=4203+840.6=5043.6 \mathrm{~kJ} \text {. } \\
& Q_{2}=Q_{1}-W_{1}=1800-1200.6=599.4 \mathrm{~kJ} \\
& \therefore \frac{\text { Heat rejected to } \frac{300 \mathrm{~K} \text { Rouen } 06}{-2}, Q_{3}+Q_{2}}{-2043.6+599.4}=\frac{5643 \mathrm{~kJ}}{\mathrm{~J}}
\end{aligned}
$$

PROB. Two reversible heat engin A and B are arranged in series with A rejecting heat directly to B through an intermediate regennoir. Engine A receives 200 kJ of heat bor a regentriy at $421^{\circ} \mathrm{C}$ and engine B is in thermal conmuni-- cation with a sink at $4.4^{\circ} \mathrm{C}$. If the wrkoutput of A is twice That of B, find (a) The enter mediate tompentive between A and B.
(b) Efficiency of treat engine
(c) Heat rejected to the cold sink.
sol. Given,
Two heat engines are arranged in series.

$$
\begin{aligned}
& Q_{1}=200 \mathrm{~kJ} \\
& T_{1}=421^{\circ} \mathrm{C}=421+273=694 \mathrm{~K} \\
& T_{3}=4.4^{\circ} \mathrm{C}=4.4+273=277.4 \mathrm{~K} \\
& W_{A}=2 W_{B} .
\end{aligned}
$$

For two reversible heat engines arranged

$$
\begin{aligned}
& \frac{T_{1}}{Q_{1}}=\frac{T_{2}}{Q_{2}}=\frac{T_{3}}{Q_{3}} \\
& \Rightarrow \frac{T_{1}}{Q_{1}}=\frac{T_{3}}{Q_{3}} ; Q_{3}=\frac{T_{3}}{T_{1}} Q_{1}=\frac{277.4}{694} \times 200 \\
&=79.9 \mathrm{~kJ}
\end{aligned}
$$

Given that,

$$
\begin{aligned}
& \text { ven that, } W_{A}=2(W B) \\
& Q_{1}-Q_{2}=2\left(Q_{2}-Q_{3}\right)=2 Q_{2}-2 Q_{3} \\
& 3 Q_{2}=\left(Q_{1}+2 Q_{3}\right. \\
& Q_{2}=\left(Q_{1}+2 Q_{3}\right) / 3=(200+2 \times 79.9) / 3=119.93 \mathrm{KF} \\
& \frac{T_{1}}{Q_{1}}=\frac{T_{2}}{Q_{2}} ; T_{2}=T_{1} \times \frac{Q_{2}}{Q_{1}}=694 \times \frac{119-93}{200}=416.16 \mathrm{k} .
\end{aligned}
$$

$$
\begin{aligned}
& Q_{A}=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{200-119.93}{200}=0.4 \cos 40 \% \\
& \eta_{B}=\frac{Q_{2}-Q_{3}}{Q_{2}}=\frac{19.93-79.9}{119.93}=0.33 \text { (a) 33.7\% } \\
& \text { sink, } Q_{3}=79.9 \mathrm{~kJ} .
\end{aligned}
$$

(3) Heat rejected to cold sink, $Q_{3}=79.9 \mathrm{~kJ}$.

PROB A reviegible hat engine. receives heat bloma reservoir at $7.00^{\circ} \mathrm{C}$ and rejects heat to another regentior at temp σ_{2}. A second heat engine receives the heat, the heat rejected by the first engin and rejects hent to a sink at $37^{\circ} \mathrm{C}$: Calculate temp $T_{2} \mathrm{iN}$ (i) Equivit efferciency for bott engines
(ii) Equal wok for both engines.

So 2. Given,

$$
\begin{aligned}
& \tau_{1}=700^{\circ} \mathrm{C}=973 \mathrm{~K} \\
& T_{3}=37^{\circ} \mathrm{C}=310 \mathrm{~K}
\end{aligned}
$$

(i) For equal efficiency of both the engines

$$
\begin{aligned}
\eta_{1}=\eta_{2} \\
1-\frac{\tau_{2}}{\tau_{1}}=1-\frac{\tau_{3}}{\tau_{2}} \\
\begin{aligned}
\tau_{2}^{\alpha}=\tau_{1} \tau_{3} ; \quad \tau_{2}=\sqrt{T_{1} \tau_{3}} & =\sqrt{973 \times 310} \\
& =549.2 i \mathrm{~K}
\end{aligned}
\end{aligned}
$$

(ii) Equal Work

$$
\begin{aligned}
& W_{1}=Q_{1}-Q_{2} ; W_{2}=Q_{2}-Q_{3} \\
& \omega_{1}=\omega_{2} ; Q_{1}-Q_{2}=Q_{2}-Q_{3} \\
& \therefore Q_{1}-2 Q_{2}+Q_{3}=0 \\
& \frac{Q_{1}}{Q_{2}}-2+\frac{Q_{3}}{Q_{2}} \quad ; \quad \frac{Q_{1}}{Q_{2}}+\frac{Q_{3}}{Q_{2}}=2 \\
& \frac{T_{1}}{T_{2}}+\frac{T_{3}}{T_{2}}=2 \\
& \therefore \quad T_{2}=\frac{T_{H}+T_{3}}{2}=\frac{973+310}{2}=641.5 \mathrm{~K} .
\end{aligned}
$$

PROB. A heat engine is used to drive a heat pump. The heat traisifes from the heat engine and from the heat pump are aged top heat the water circulating through the radiators of a building. The efficiency of a heat engine 527% and $c o p$ of heat pump; 4: Evaluate the ratio of heat through
802.

$$
\begin{aligned}
& 7_{D E}=-29 \% \\
& (\operatorname{cop})_{H \cdot P}=4
\end{aligned}
$$

The wok produced by heat engine is utilized to teat the water boom the pump.

$$
\begin{gather*}
W_{H E}=W_{H \cdot P} \\
\eta_{H E}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}=0.27 \tag{1}\\
Q_{2}=0 \cdot 73 Q_{1} \\
(C \cdot O \cdot P)_{H P}=; \quad Q_{2} \tag{2}\\
W_{H E}=W P \\
Q_{1}-Q_{2}=Q_{4}-Q_{3}-3-1\left(Q_{4}-Q_{3}\right)
\end{gather*}
$$

- Substituting equation (3) in (2), $Q_{4}=4\left(Q_{1}-Q_{2}\right)=4 Q_{1}-4 Q_{2}$ Ratio of heat transfer to cooling Lota (Q4. QQ_{2}) heat transfer to the heat angle Q_{1}

$$
\begin{aligned}
& =\frac{Q_{2}+4 Q_{1}-4 Q_{2}}{Q_{1}}=\frac{4 Q_{1}-3 Q_{2}}{Q_{1}} \\
& =\frac{4 Q_{1}-3 \times 0.73 Q_{1}}{Q_{1}}=1.81
\end{aligned}
$$

PROB. Determine the power required to run a refligentor that transfer $2000 \cdot \mathrm{KJ} / \mathrm{m} / \mathrm{n}$ of heat them a cooled space at $0^{\circ} \mathrm{C}$ to the surrounding at mosphere at $27^{\circ} \mathrm{C}$. The refligen of or of cites on revered carnot cycle.

802
For a rebbigenation syytu, $W=Q_{1}-Q_{2}, R Q$

$$
\begin{aligned}
(C \cdot O \cdot P)_{R e f} & =\frac{Q_{2}}{Q_{1}-Q_{i 2}}=\frac{T_{2}}{T_{1}-T_{2}} \\
& =\frac{273}{300-273}=10.11
\end{aligned}
$$

$$
h Q_{2}=2000
$$

$$
\begin{array}{ll}
T_{2}=0^{\circ} \mathrm{C} \\
50
\end{array}
$$

$$
2000
$$

$$
@ 273 \mathrm{k}
$$

we know, $(c \cdot 0 \cdot P)=10.11=\frac{Q_{2}}{Q_{1}-Q_{2}}=\frac{2000}{Q_{1}-2000}$

$$
\begin{aligned}
& \therefore\left(Q_{1}-2000\right) 10 \cdot 11=2000 \\
& \therefore Q_{1}=\frac{2000}{10.11}+2000=2197.8 \mathrm{~kJ} / \mathrm{mi} \\
& \quad 2000=197.8 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

power required, $W=\left(Q_{1}-Q_{2}\right)=2197.8-2000=197.8 \mathrm{~kJ} / \mathrm{min}$
PROB. An engine operating on a carnot cycle works with in temperatures of 600 K and 300 K . of the engine receives 2000 kF of heat, evaluate workdone and Thermal eff of the enghe.
sol. For a carnot cycle,

$$
\begin{aligned}
& \text { For a Carnot cycle, } \\
& M_{\text {cant }}=\frac{\text { workdone }}{\text { Hetroppled }}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}} \\
&=1-\frac{T_{2}}{T_{1}}=1-\frac{300}{600}=0.5 \cos 50 \%
\end{aligned}
$$

\therefore We know, $M_{\text {cannot }}=0.5=\frac{\text { Weikdore }}{\text { Hecispad }}$
carnot cycle.

$$
\begin{gathered}
\quad=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{2000-Q_{2}}{2000} \\
\therefore Q_{2}=2000-1000=1000 \mathrm{KJ} . \\
\therefore \text { Wrkdre, } \omega=G_{1}-Q_{2}=2000-1000=1000 \mathrm{~kJ}
\end{gathered}
$$

Entropy (ENTRoPY)
The first law of thermodynamics was stated interns of cycles first and it was show that the cyclic integral of heat to the cycle c integral of wok. When first lats applied for thermodynamic processes, the existence of a property, the internal energy.
similarly, the second law was also first stated intererso of aces executed by systems $[$ heat ingle cycle].
when second lats applied for therr-odyramic process, leads to definition g a property called Entropy:.
Entropy of a system is a measure of the degree of molecular disorder existing in the system. st is in important thermodynamic property of a working substance; which increase with the addition of teat and decreases with its removal. of sextexiour top define the term entropy, But it is easy to define the change of entropy - At st working substance.

In a reversilate process, over a small range of tompinative, the increase (on decrease of entropy, listen multiplied by the alasefute tomperatios gives the teat absorbed on rejected by the working subgemce.
$\therefore s_{a}=T d s$ or $d S=\frac{S Q}{T} T s=$ Absolute te of enteron $T=$ Absolute temperate $\delta_{Q}=$ Her added $\frac{C D}{0}$ rejected.
Relation between Hest and Entropy:-
Consider the heating of a waking esperance by a
 diagram.

Let a small quantity of tet (8Q) A added

Tempundue-Entroty duster.
(6) Supplied to the waking substance, which licereng entropy by (dy). It the
 $8 Q=\sigma d s$
Total heat Eqpelied bon repeated, $\int \delta Q=\int T d s$.

$$
\therefore \quad d s=\frac{\delta \dot{Q}}{T} .
$$

The change in entropy may be $\frac{T}{T}$ seganded as a marque of the late of the availability cen unavalleplipity of tet of transformation in to work. The licrasei is entropy is obtained flem a given quantify of teat at dor tempendure.
Available and undvallable Heat energy:-
Available heat energy:- is that part of the heat energy (orr heat supplied) which combe corvivated in to mechanical work. unavalldrle her energsicin os that part of heat energy which can nat be converted in to sriecharical work....

The common toom used for unavallable heat energy, aecording to secud law of thermodymmics, is the heat rejected by the sistem to the surraundings.

- Total heat to energy supplied to the system
$\delta Q=$ Avalable heatenogy + unavallable heaterengr

$$
=A \cdot H \cdot E+U \cdot H \cdot E=\text { Workdono }+ \text { Heat rejected. }
$$

the maximum possuble efficiency obtalnable by the enghe workingan a canst cycle is gevanby
$T_{1}=$ Masumen Absolute tempertive

$$
\begin{aligned}
\eta & =\frac{T_{1}-T_{2}}{T 1}=1-\frac{T_{2}}{T} \quad T_{2}=\text { Lasept absolut } \\
& =\frac{\text { Max.Wolk dodained }}{\text { Heat syplled ©o aboinad }}=\frac{8 W}{\delta Q}=1-\frac{T_{2}}{T_{1}}
\end{aligned}
$$

$$
T_{2}=\text { Lasest absolute tapeadeve }
$$

(ब) $8 W=8 Q\left[1-\frac{\sigma_{2}}{T}\right]$
w. Sister: Lowe prantical therp of fieat regectionst the tay of gorroudhas.

$$
\begin{equation*}
\therefore \quad \therefore \quad 8 W=8 Q\left[1-\frac{T_{0}}{T}\right]=8 Q-8 Q \times \frac{T_{0}}{T_{I}} \tag{0}
\end{equation*}
$$

$$
\begin{aligned}
& =8 Q-U H E \\
\therefore U H E=\sigma_{0}\left(\frac{8 Q}{T}\right) & =T_{0}-d S .
\end{aligned}
$$

The unavallafle heat energe (UNE) (or hat sejeated at the product of sort. He lavest termperitime of heat Sejection and chaye of entroty of the sestem dioring the procass of supplying thet. heatenergi (or) dreavergitility of the proeoss.
Clacgius inequality:-
The clanglus linequility statoy that Lstenever a clsed sygtem undergos a cyclic process, the cyclic sitegral of $\frac{\delta Q}{T}$ is less than zen for an irreversible proces and is equal to 3 ens ${ }^{T}$ for a reveretbe gelicprox $\oint \frac{\delta \theta}{T}<0$, for an irreverible cyclic process $\oint \frac{\delta Q}{T}=0$, for a revasible csclic process.
The clanglus incenality is wrilten of $\dot{\oint} \frac{8 Q}{T} \leq 0$.
units of Entropy $d s=\frac{8 Q}{T} \quad \mathrm{KJ} / \mathrm{K}$. witis.
The entropy if a substance is zers at absolute zerd tenpentive.

Clagius Thedom
sts states that a seversule

line canbe replaced by two revergute
adiabatic lines and a reverible isothelind the
1-2 prooss \rightarrow reversist process, $1-A, B-2 \rightarrow$ two adiabotic lines, $A \rightarrow B \rightarrow$ ssoltiond line. Applying the first latw of theimedymanics to the reverisle process

$$
Q_{1-2}=w_{1-2}+u_{2}-U_{1}
$$

FA process $4, F A, A-B$ and $B-2, C_{1-A-B-2}=W_{1-A-B-2}+V_{2}-U_{1}$

$$
\text { since } \begin{aligned}
& W_{1-2}=W_{1-A-B-2} \\
& Q_{1-2}= Q_{1-A}+Q_{A-B}+Q_{B-2} \\
& Q_{1-2}=Q_{A-B}
\end{aligned}
$$ = U_{1} of ineimedymamics to the reuntidle procers

$$
Q_{1}-A=Q_{1 B-2}=0 \text { two delupate }
$$

morsses.

From tigine B, consider a 8imoth cloged curve repragenting a revascube cycle. a rewayible closed cycle curne is durided into no of ondl carnt cycley. For a sull carrat cosce, Q_{1} is theat gupplied at. T_{1} and ${ }_{2}$; hat resiet it T_{2}. Thus accoldey to abosote terpentue scale fra reverible cosde,

$$
\frac{\delta Q_{1}}{\pi}=\frac{\delta Q_{2}}{\pi}
$$

Cosider a sign contreation for heat tranter, whe is for heat sijection.

$$
\frac{\delta Q_{1}}{\pi_{1}}+\frac{\delta Q_{2}}{T_{2}}=0
$$

For all x_{11} carnt cocles, $\left(\frac{\delta_{1}}{T_{1}}+\frac{S O_{2}}{T_{2}}\right)+\left(\frac{\delta O_{3}}{T_{3}}+\frac{\delta a_{y}}{T_{1}}\right)+\cdots=0$ $\phi^{\prime} \frac{\frac{80}{\sigma}=0 \rightarrow \text { clavsind Berden } . ~}{\text { B }} \rightarrow$.
princupe of increage of Entropy
The claligius inequality states that inhenciner a clifed indongers a cyclic process, the cyclic integrad of $\frac{8 G}{T} i$ lass than zenofn an croverifila procegs. FA relunguble procogs', $\frac{8 Q}{T}$ is zend.

$$
\therefore \quad \oint \frac{8 Q}{T} \leq 0
$$

lofo we knots that change in estsopy, $d s=\frac{8 Q}{T}$
Since, entrofy is a thermodyramic propenty and the cyclic interpal of a thequodymamic property is zers, thereffe. (1) canke written as

$$
\begin{align*}
\delta \quad \frac{\delta Q}{T} & \leq \delta d s \\
\frac{\delta Q}{T} & \leq d s \\
d s & \geqslant \frac{\delta Q}{T}
\end{align*}
$$

When the procersi is revasilse, $d S=\frac{8 Q}{T}$ ustenthe procoss is lreeversubt, $d s=7 \frac{\delta_{Q}}{T}$

If we apply equation (2) to an is dated satan lite cunivess for which $8 Q=0$, then the caution (2) Combe written ns

$$
d s \geqslant 0
$$

For a reversible cyclic process, $d s=0$ Cor $s=$ constant.
Fin a irreverible process, $d s>0$
since in practice all processes are irreversible, Therefore the entrap of such a system like universe goes on increasing
\therefore This is know as princyle of increase in entropy.
General Cage for change of Entropy of a Gas
Let 1 kg of gas at a pressure p_{1}, volume v_{1}, absolute Ter $5, \times$ Entropy s, be heated to $P_{2}, V_{2}, T_{2} \nsubseteq S_{2}$ respectively. By Lavs of conservationperagy.
$d Q_{Q}=d U+d w=c_{r} d T+P d V$
Dividing on both sides by T, we get

$$
\begin{array}{ll}
\frac{d Q}{T}=\frac{C V d T}{T}+\frac{P d V}{T} & \therefore P v=R T \\
d s & =\frac{C v \cdot d T}{T}+\frac{R}{v} d v
\end{array} r \frac{R}{T}=\frac{R}{v} .
$$

integrating both sides, we got

$$
\begin{align*}
& \text { ing both sides/ we got } \\
& \int_{1}^{2} d s=c v \int_{T_{1}}^{T 2} \frac{d T}{T}+R \int_{v_{1}}^{v_{2}} \frac{d v}{v} \tag{1}\\
& \quad \therefore s_{2}-s_{1}=c \ln \frac{T_{2}}{T}+R \ln \frac{v_{2}}{v_{1}} \quad(T, v)
\end{align*}
$$

$$
\begin{align*}
& S_{2}-S_{1}=C_{v} \ln \frac{P_{2} v_{2}}{T_{1} v_{1}}+R \ln \frac{v_{2}}{v_{1}} \quad\left[\because \frac{k_{1} v_{1}}{T}=\frac{P_{2} v_{2}}{T_{2}}\right. \\
& \frac{T_{2}}{\pi}=\frac{P_{2} v_{2}}{P_{2} v_{1}} \\
&=C_{v} \ln \frac{p_{2}}{P_{1}}+C_{v} \ln \frac{v_{2}}{V_{1}}+R \ln \frac{v_{2}}{v_{1}} \\
&=C_{v} \ln \frac{P_{2}}{P_{1}}+\left(C_{1}+R\right) \ln \frac{v_{2}}{v_{1}} \\
& \therefore S_{2}-S_{1}=C_{v} \frac{P_{2}}{P_{1}}+C_{P} \ln \frac{v_{2}}{v_{1}} \quad\left(P_{1} v\right) \tag{3}
\end{align*}
$$

Entropy change ins different reversible gs processes
(i) Peverible Constant pressure process

$$
d s=\int \frac{d Q}{T}=\int \frac{m C_{p} d T}{T}=m c_{p} \ln \frac{\sigma_{2}}{\pi_{1}}
$$

(2) Revergible corstant volume procoss

$$
d s=\int \frac{d Q}{T}=\int m \frac{e^{2} d T}{T}=m q_{r} \ln \frac{T_{2}}{T_{1}}
$$

(3) Revergluse gsothernad process

$$
\begin{aligned}
d s=\int \frac{d Q}{T} & =\int \frac{p d v}{T}=\int \frac{m R}{v} d v \\
s_{2}-s_{1} & =m R \ln \frac{v_{2}}{v_{1}}=m R \ln \frac{p_{1}}{P_{2}}
\end{aligned}
$$

(4) Revessible adiabatic process

$$
d s=\int \frac{d Q}{T}=0
$$

(5) Reversible polytropic process

$$
\begin{aligned}
d s=\int \frac{d Q}{T} & =\frac{\gamma-n}{\gamma-1} \int \frac{d w}{T}=\frac{\gamma-n}{\gamma-1} m R \ln \frac{v_{2}}{v_{1}}=\frac{n-n}{\gamma+1} m c_{v} \ln \frac{\tau_{2}}{T_{1}} \\
\left(S_{2}-s_{1}\right) & =\frac{\gamma-n}{\gamma-1} \int \frac{p d v}{T}=\frac{\gamma-n}{\gamma-1} m R \int \frac{d v}{v}=\frac{\gamma-n}{\gamma-1} m R \ln \frac{v_{2}}{v_{1}} .
\end{aligned}
$$

Thiod Latr of Thermodyranics:-
Enitroply is a megiure of the uncortainity of motecicitar posittion in matter in eirther phage. This uncortainity of rindecular position in matter is a function of tompenterse and it decreages as temperative decreages. ot is due to diffent evergy levele of moteculas in the matteo. The moteciles of a substance becomes motionless at absolute zers temperative, then having zens extropy.

The entrofy of a pure sulestance at aboiolute zero , temperature s' zero. This staternent is Knomes third lausf

$$
\mathrm{ff}_{\mathrm{p} \rightarrow 0} s=0 .
$$

This lako so ergefal in ealculating the absolute entropg ofa substance. This is also risefoll \& calculating theinodynamic propenties such as heat, trenpenative and is also rsefal in analysing chemic!! and phage equilifrium. Thi law s' significont in sxplaining the behaviour of solidy at low terpeinturre.

PROR: The volume of \& kg of air e increases $6 \mathrm{~m} \mathrm{~m} 0.5 \mathrm{~m}^{3}$ to $1.3 \mathrm{~m}^{3}$ ishile its preserve decreases boom 1 MPa to 250 kPa . Then 420 kJ of heat were added to it isothermally. Calculte the total entropy change fol the system for the combined procarp.
Assume for air $C_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad C_{V}=C_{P}-R$

$$
\begin{array}{lll}
C_{p}=1.005 & \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} & C_{V}=\varphi-R \\
R=0.287 & \mathrm{~kJ} / \mathrm{kgk} . & =0.718 \mathrm{~kJ} / \mathrm{kg} .
\end{array}
$$

sol. process 1-2 (geveral props)

$$
\begin{aligned}
S_{2}-S_{1} & =m C_{1} \ln \frac{P_{2}}{R}+m c_{p} \ln \frac{V_{2}}{V_{1}} \\
& =1 \times 0.781 \ln \frac{250 \times 10^{3}}{1 \times 10^{6}}+1 \times 1.005 \ln \frac{1.3}{0.5} \\
& =-0.035 \mathrm{~kJ}) \mathrm{k} .
\end{aligned}
$$

process 2-3 osothesmal process
To find $\frac{\sqrt{3}}{\sqrt{2}}$, we know $Q_{2-3}=p_{2} v_{2} \ln \frac{v_{3}}{\sqrt{2}}$.

$$
\begin{aligned}
\text { we know } Q_{2}-3 & =(420) \times 18^{3}=250 \times 10^{3} \times 1.3 \ln \frac{V_{3}}{V_{2}} \\
& +\frac{V_{3}}{V_{2}}=3.64 \\
\therefore \quad S_{3}-S_{2} & =m R \ln \frac{V_{3}}{V_{2}}=1 \times 0.287 \ln 3.64 \\
& =0.37 \mathrm{KJ} / \mathrm{K} .
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Total entropy chare }=\left(s_{3}-s_{1}\right) & =\left(s_{2}-s_{1}\right)-\left(s_{3}-s_{2}\right) \\
& =-0.035+0.37=0.335 \mathrm{k}) \mathrm{k}
\end{aligned}
$$

WROB. A closed system contest of 1 kg of air ishich is initially at 1.5 bar and $67^{\circ} \mathrm{C}$. The volume doubles os the system undorgos a process according to the law pr in $=C$. Find woikdone, that transfer and change ln'
SoL: $\begin{aligned} m & =1 \mathrm{~kg}, P_{1}=1.5 \text { bar, } \sigma_{1}=67+273\end{aligned}$

$$
\begin{aligned}
& m_{2}=2 v_{1} ; \frac{v_{2}}{v_{1}}=2 ; 340 k \\
& v_{2}-1
\end{aligned}
$$

$$
T_{2}=\frac{340}{(2)}=295 \mathrm{~K} .
$$

$$
\begin{aligned}
& \text { (() }
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1-4-1.2}{1.4-1} \times 1 \times 0.28\right) \ln (2)=0.099 \\
& x j!k .
\end{aligned}
$$

 entropy.

PROB. A thermal energy saurce at 800 K lfes 2000 kJ of theat to a sink of at (a) 500 K and (b) 750 K . Detormine lshich heat tranffer s mile irreverstble.
so $T_{\text {source }}=800 \mathrm{~K} ; Q_{\text {source }}=2000 \mathrm{~kg}, T_{\sin k}=750 \mathrm{~K}$.
The entropy change for each regenvir cambe determirat of $\Delta s=\frac{Q}{\tau}$

$$
\begin{aligned}
& \Delta S_{\text {source }}=\frac{Q_{\text {source }}}{T_{\text {source }}}=-\frac{2000}{800}=-2.5 \mathrm{~kJ} / \mathrm{K} . \\
& \Delta S_{\text {sink }}=\frac{Q_{\text {sink }}}{T \operatorname{sink}}=+\frac{2000}{500}=4 \mathrm{~kJ} / \mathrm{K} . \\
& \therefore \Delta S_{\text {srotal }}=\Delta S_{\text {source }}+\Delta S_{\text {sink }}=-25+4=1.5 \mathrm{~kJ} \mid: \mathrm{K} .
\end{aligned}
$$

cloz When heat s trandfered to a sink at 750 K .

$$
\begin{aligned}
& \Delta S_{\text {saile }}=-2.5 \mathrm{~kJ} / \mathrm{k} . \\
& \Delta S_{\text {sink }}=\frac{2000}{750}=2.7 \mathrm{~kJ} / \mathrm{k} . \\
& \therefore \Delta S_{\text {tatal }}=-2.5+2.7=+0.2 \mathrm{~kJ} \mid k .
\end{aligned}
$$

PRSB. 1.5 kss of air ot 1 boor, 300 K is contalved in a reigid singulated tark. During the process, 18 kJ of work is dane on the gas through a paddle-ched mechanism. Detamine the fund terp, funal prossune of alw in the tark and change in is entropy. Assure speafechents of oir to be corstant.

$$
c_{p}=1.005 \text { kJ|ksk; } c_{v}=0.716 \mathrm{~kJ} \mid k_{0} k
$$

For an ingsulded tank, teat transforis iswo. paddle-theet wotk is added to a system.

$$
\begin{aligned}
& \quad Q=W_{\text {paddle }}+\Delta U ; 0=-18 \mathrm{~kJ}+\Delta U \\
& \therefore U=\begin{array}{l}
18 \mathrm{~kJ}=m C_{V}\left(T_{2}-T_{1}\right) \\
18=1.5 \times 0.716\left[T_{2}-300\right] ; T_{2}=316.76 \mathrm{~K}(\mathrm{C}) 43.76^{\circ} \mathrm{C}
\end{array}
\end{aligned}
$$

From constantivolume process, $\begin{aligned} \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} ; \begin{aligned} p_{2} & =p_{1} \times \frac{p_{2}}{T_{1}}=1 \times \frac{316.76}{300} \\ & =1.0585 \text { len }\end{aligned}\end{aligned}$
change of entropy, $\Delta S 3 \quad m C_{V} \ln \frac{T_{2}}{T_{1}}=1.500 .716 \ln \frac{316.76}{300}$
Entropy is a point (ev propecty function:- $\cdots=0.0584 \mathrm{~kJ} / \mathrm{K} \mathrm{C}$ The mathenstical quantity $\int \frac{\delta a}{T}$ is the proisenty of a reversibbe live and \& thwa point funces congider a system takin blom initial sthet A to find state 2 by a reveruthe path A. Subsequally, the syrten may loe brought to back rimitial state by the dollowing severtuse patiss $B(\operatorname{ors}) C$. The paths A aB together constitate a revagible eycle and so AR.C. For a renestube cyde, $\int_{1}^{2 v i a} \frac{\delta a}{T}+\int_{2}^{1 \operatorname{vin} B} \frac{\delta a}{T}=0 ; \int_{1}^{2 v i a} \frac{\delta a}{T}+\int_{2}^{1 v i s i c .} \frac{\delta Q}{T}=0$, Entrpyi $\overrightarrow{a p p o i n \sigma}$
 Puth fllowad and Tequads anly end sities 102.50 . Entiopy is a Poir Runtion .

GENERAL THERMODYNAMIC RELATIONS
The thermodynamic properties I pressive, volume and tempendeare] are directly measurable while the other properties \sum internal energy, enthalpy and entropy, $U, H, S]$ are evaluated interns of these measurable properties.

Thus, it is very important to develop the the imo--dynamic relations for properties which can not be merged directly interins of the combination of propaties estrich cam be measured directly (ar) evaluated expen'mently. There we other two inpstant propaties also which are known as Helmholtz function(F) and Gibbs function (G).
Helonisoltz function (F):- ss a propaty of a system and is given by substracting the product of absolute temperative $(T$) and entropy (S) Glom the internal energy (U). Mathematically Helmindtz function, $F=U-T S$.
since (U-TS) i made up entirely of properties, Therefor, Helmholtz function is abs a prepporty.
Gibbs Function (G):- The Giles function Cabs known as thermodynamic potential.) is also a property of a system and is

Mathematically, Giblb's Function $G=(H=T S):$
Exact differential. suppose, z is a function of two independent pripertigs x and y.

$$
z=f(x, y)
$$

According to condition of exact differentials,

$$
\begin{aligned}
& \text { Ling to condition of exact differentiate. } \\
& d z=\left(\frac{\partial z}{\partial^{2} x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} d y=M d x+N d y \text {. } \\
& \text { elates, }
\end{aligned}
$$

Acceding to calculus,

* MAXWELL'S Equations
(1) Internal energy, $d U=\delta Q-\delta \omega$

The above equation is in the $f 88 \mathrm{~m}$,

$$
d z=M d x+N d y
$$

\therefore Exact differental fonv, $\left(\frac{\partial T}{\partial v}\right)_{s}=-\left(\frac{\partial P}{\partial s}\right)_{v}$
(2) Enthalyy

$$
\text { ugy } \begin{align*}
d H & =d u+d(p v) \tag{1}\\
& =d u+p d v+v d p \quad[\because d u=T d s p d v] \\
& =(T d s-p d v)+p d v+v d p= \\
\therefore \quad \dot{d} H & =T d s+v d p .
\end{align*}
$$

in exact differatial fons, $\left(\frac{\partial T}{\partial p}\right)_{s}=\left(\frac{\partial V}{\partial S}\right)_{p}$. (2)
(3) Helmbolt2 fenction $(P)=U-T S$

$$
\begin{align*}
& \text { benction }(P)=U-T S \\
& \begin{aligned}
d F & =d U-d(T S)=d U-T d S-S d T \\
& =(T d S-p d \nu)-T d S-s d T \\
& =-p d \nu-s d T
\end{aligned}
\end{align*}
$$

in exact differentiol form, $\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}$
(4) Giblos' penction $B=H-T S$

$$
\begin{aligned}
& \text { pennction } \quad G=H-T S \\
& \begin{aligned}
d G & =d H-d(T S)=d H-T d S-S d T \\
& =T d s+v d p-T d S-S d T \\
& =v d p-S d T
\end{aligned}
\end{aligned}
$$

in excact deffecertd fow, $\left(\frac{\partial V}{\partial T}\right)_{p}=\left(\frac{\partial s}{\partial p}\right)_{T}$ (2).
Thege 4 equations are knoun as maxwells equations. ssothermal coiefficient of compresesplitit (k)
ot is the ratio of rate of change of volume w.r-to its sigind volume to that of change in presseve at a given tempentive.

$$
\begin{aligned}
& K=-\frac{\left(\frac{d V}{V}\right)_{T}}{d T}=\frac{1}{V} \cdot\left(\frac{d V}{d p}\right)_{T} \quad-\quad \text { en pirgerene decteres volumere } \\
& \text { hi progene decieses volume. }
\end{aligned}
$$

Adiabatic compressibibity (Ks) : ot is the ratio of rate of change of volume writo its siginal volume to that of change in pressue under adiabatie conditions.
 w.r. To suginal volume expasian that ot ehance in tempenative at const. pregne.

$$
B=\frac{1}{V} \cdot\left(\frac{d V}{d T}\right)+\ldots
$$

Tads equations:-
Since entropy may be expressed as a function of any otto two properties eeg. tempentere T and specific volume ν. Thew,

$$
\begin{align*}
& s=f(T, v) \\
& d s=\left(\frac{\partial s}{\partial \tau}\right)_{v} \cdot d T+\left(\frac{\partial s}{\partial V}\right)_{T} \cdot d v \tag{1}
\end{align*}
$$

By multiplying with T, we get, $T d S=T\left(\frac{\partial S}{\partial \tau}\right)_{v} \cdot d T+\partial s\left(\frac{\partial S}{\partial v}\right)_{\sigma} \cdot d v$.
But fora reversible constant volume change,

$$
\begin{array}{r}
d q=c v \cdot(d \tau)_{v}=\tau(d s) v \\
c v=\tau \cdot\left(\frac{\partial s}{\partial T}\right)_{v}
\end{array}
$$

$$
\begin{aligned}
W & =v-J S \\
& =-s d T
\end{aligned}
$$

$$
=v-J S
$$

But $\left(\frac{\partial S}{\partial T}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{v}$ from maxwells Helmholtz equation,

$$
\therefore \quad T d S=c_{v} \cdot d \tau+T \cdot\left(\frac{\partial P}{\partial \tau}\right)_{v} \cdot d \nu
$$

This is First Tads equiv.

Similarly,

$$
\begin{aligned}
s & =f(\sigma, p) \\
d s & =\left(\frac{\partial s}{\partial T}\right)_{p} \cdot d \tau+\left(\frac{\partial S}{\partial P}\right)_{T} \cdot d p
\end{aligned}
$$

By multiplying witt $T, T d S=T \cdot\left(\frac{\partial S}{\partial \tau}\right)_{p} \cdot d T+T \cdot\left(\frac{\partial S}{\partial T}\right)_{T} \cdot d p$.
For a constant pressure change,.
$d q=c_{p}(d \tau)_{p}=T(d s)_{p}$.

$$
\therefore e_{p}=T \cdot\left(\frac{\partial S}{\partial T}\right) p
$$

\therefore But, $\left(\frac{\partial S}{\partial T}\right)_{F}=-\left(\frac{\partial V}{\partial T}\right)_{p}$, from Giblet equation.

$$
\begin{aligned}
G & =H-T S \\
& =-S d T+v d p .
\end{aligned}
$$

$$
\therefore \quad T d s=c_{p} d T-T\left(\frac{\partial V}{\partial T}\right)_{p} \cdot d p \rightarrow 2 \text { nd } \sigma d s \text { equation. }
$$

Joule Thomson co-efficient:- The change in temperative with drop in pressure at constant enthalpy is ter med es Joule-thomear coefficient. $\mu=\left(\frac{d \tau}{d p}\right)$. It vionies witt bott tempentiene and pressure of the jas.

* The magnitude of the Joule thomson coefficient is a maseaciof the imperfection of a gas or its deviation bloom perfect goes behaviour. When $\mu=0$, tempentive remains earstart (Throttling).

PROB. Derive the equation $\left(\frac{\partial v}{\partial T}\right)_{s} /\left(\frac{\partial v}{\partial T}\right)_{p}=\frac{1}{\partial-1}$.
For Thermodynamic propaties, P, v, T, the cyclic relation is given by $\left(\frac{\partial p}{\partial V}\right)_{T} \cdot\left(\frac{\partial v}{\partial T}\right)_{p} \cdot\left(\frac{\partial T}{\partial P}\right)_{V}=-1\left[\because\left(\frac{\partial x}{\partial \partial}\right)_{2} \cdot\left(\frac{\partial y}{\partial 2}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1\right]$
similarly for $S, V, T \cdot\left(\frac{\partial S}{\partial V}\right)_{T} \cdot\left(\frac{\partial V}{\partial T}\right)_{S} \cdot\left(\frac{\partial T}{\partial S}\right)_{V}=-1$
From the equation (1), $\left(\frac{\partial V}{\partial f}\right)_{p}=-\frac{1}{\left(\frac{\partial p}{\partial V}\right)_{T} \cdot\left(\frac{\partial T}{\partial p}\right)_{V}}$
prom the equation (2), $\left(\frac{\partial V}{\partial T}\right)_{S}=\frac{-1}{\left(\frac{\partial S}{\partial V}\right)_{T} \cdot\left(\frac{\partial T}{\partial S}\right)_{V}}$
By,
Equation (4)/Equdion(5), we get $\frac{\left(\frac{\partial V}{\partial T}\right)_{S}}{\left(\frac{\partial V}{\partial F}\right)_{P}}=\frac{\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial T}{\partial P}\right)_{V}}{\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial T}{\partial S}\right)_{V}}$

* Since, from $d F=-s d T-P d v$

$$
=\frac{\left(\frac{\partial s}{\partial T}\right)_{v}}{-0}
$$

$$
\begin{aligned}
& \text { From } d F=-s d T-P d V=\frac{\partial T)_{V}}{\left(\frac{\partial s}{\partial v}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}} \quad=\left(\frac{\partial V}{\partial T}\right)_{T} .
\end{aligned}
$$

But for $\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{T},\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{p}{K},\left(\frac{\partial v}{\partial p}\right)_{T}=-\nabla K$.
-

$$
\begin{aligned}
& \therefore \frac{\left(\frac{\partial V}{\partial T}\right)_{s}}{\left(\frac{\partial V}{\partial J}\right)_{p}}=\frac{C_{v} / \tau}{\left(\frac{\beta}{K}\right)^{\alpha} \times(-\lambda k)}=\frac{C_{v}}{-T \cdot \frac{\beta^{2}}{k} \cdot v} \\
& =\frac{C_{V}}{C_{p}-C_{V}} \quad\left[\because-T \cdot \frac{B^{m}}{k} v=C_{p}-C v\right] \\
& =\frac{1}{\frac{C P}{C_{V}}-\frac{C v}{C_{V}}}=\frac{1}{\gamma-1} \text { proved }
\end{aligned}
$$

II B. Tech I Semester Regular Examinations, March - 2021 THERMODYNAMICS

(Com to ME, AME)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) What is a thermodynamic system? Explain different classes of systems with suitable examples.
b) Compare macroscopic and microscopic approaches in thermodynamic studies?

Or

2 a) What is a quasi-static process with example?
b) The properties of a closed system will change following the relation between pressure and volume as $\mathrm{PV}=3.0$ where P is in bar, V is in m 3 . Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar.
3 Write down the general equation for steady flow systems and simplify when applied for the following systems:
(a) Steam turbine.
(b) Steam nozzle.
(c) Centrifugal compressor.
(d) Condenser.

Or
4 a) Define the first law of thermodynamics?
b) A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives an output of 8.2 kW. Determine:
(i) The thermal efficiency.
(ii) The rate of heat rejection

5 a) Define Carnot efficiency and which is the more effective way to increase the efficiency of a Carnot cycle: to increase T_{1} keeping T_{2} constant; or to decrease T_{2}, keeping T_{1} constant? Where T_{1} is upper temperature and T_{2} is lower temperature.
b) Discuss the significance of Gibbs and Helmholtz functions.

Or
6 a) Prove that entropy is a property of a system.
b) 5 kg of air at 550 K and 4 bar is enclosed in a closed system.
(i) Determine the availability of the system if the surrounding pressure and temperature are 1 bar and 290 K respectively.
(ii) If the air is cooled at constant pressure to the atmospheric temperature, determine the availability
7 a) A mass of wet steam at temperature $165^{\circ} \mathrm{C}$ is expanded at constant quality 0.8 to pressure 3 bar. It is then heated at constant pressure to a degree of superheat of $66.5^{\circ} \mathrm{C}$. Find the enthalpy and entropy changes during expansion and during heating. Draw the T-s and h-s diagrams.
b) Explain about phase transformation and various properties involved during phase change?

8 a) Discuss about triple point $\&$ critical point.
b) A pressure cooker contains 1.5 kg of saturated steam at 5 bar. Find the quantity of heat which must be rejected so as to reduce the quality to 60% dry. Determine the pressure and temperature of the steam at the new state.
9 a) Explain about adiabatic mixing of perfect gases.
b) A mixture of hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ is to be made so that ratio of H_{2} to O_{2} is 2:1 by volume. If the pressure and temperature are 1 bar and 25 respectively, calculate:
(i) The mass of O_{2} required.
(ii) The volume of the container

Or
10 a) Explain about compressibility charts.
b) Explain the following i)Heating and humidification
ii) Cooling and dehumidification.

II B. Tech I Semester Regular Examinations, March - 2021 THERMODYNAMICS

(Com to ME, AME)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks

1 a) Briefly discuss about the work and heat transfer.
b) A Gas of volume 6000 CC at a pressure of 100 kPa is compressed quasi statically according to $\mathrm{PV}^{2}=$ aconstant until the volume becomes 2000CC. Determine the final pressures and work transfer.

Or
2 a) Show that work is a path function and not a property.
b) A gas under goes two processes: Process 1-2 expansion from pressure $\mathrm{P} 1=340$ kPa and volume $\mathrm{V} 1=0.0425 \mathrm{~m}^{3}$ to pressure $\mathrm{P} 2=136 \mathrm{kPa}$, during which the $\mathrm{P}-\mathrm{V}$ relation is given by PV2 $=$ constant. Process 2-3 constant pressure compression to volume V3 $=\mathrm{V} 1$. Sketch the processes on a P-V diagram and determine the work done.
3 a) Apply first law to a process and a cycle.
b) A cyclic heat engine operates between a source temperature of $800^{\circ} \mathrm{C}$ and a sink temperature of $30^{\circ} \mathrm{C}$. What is the least rate of the heat rejection per kW net output of the engine?

Or

4 a) Define internal energy and prove that it is a property of the system.
b) A system executes a cyclic process during which there are four transfers of heat as given below: $\mathrm{Q}_{1-2}=880 \mathrm{~kJ} ; \mathrm{Q}_{2-3}=100 \mathrm{~kJ} ; \mathrm{Q}_{3-4}=-720 \mathrm{~kJ} ; \mathrm{Q}_{4-1}=200 \mathrm{~kJ}$. The work transfers during the processes are given as: $\mathrm{W}_{1-2}=60 \mathrm{~kJ} ; \mathrm{W}_{2-3}=-40 \mathrm{~kJ}$; $\mathrm{W}_{3-4}=80 \mathrm{~kJ}$. Find W_{4-1}.
5 a) Explain in detail about Clausius inequality.
b) Derive the Maxwell relations.

Or
6 a) Explain the working of car not cycle and derive the expression for its thermal efficiency.
b) Define about thermal reservoir and heat engine performance parameters?

7 a) Derive Clausius Clapeyron equation
b) Using Clausius Clapeyron equation, estimate the enthalpy of vaporization at 220

$$
\text { saturation temperature. Take the following data } \mathrm{Ts}=220^{\circ} \mathrm{c}, \mathrm{vg}=0.086 \mathrm{~m}^{3} / \mathrm{kg} \text {, }
$$ $\mathrm{vf}=0.001109 \mathrm{~m} 3 / \mathrm{kg},(\mathrm{dP} / \mathrm{dT})=52 \mathrm{kPa} / \mathrm{K}$.

Or
8 a) A rigid vessel of capacity $0.2 \mathrm{~m}^{3}$ holds 10 bar steam at $250^{\circ} \mathrm{C}$. The vessel is slowly cooled till the steam pressure drops to 3.5 bar. Determine the (i) final temperature and dryness fraction of steam; (ii) change in entropy.
b) Define critical-point phase transformation?

9 a) A mixture of ideal gases consists of 3 kg of nitrogen and 5 kg of carbon dioxide and at a pressure of 300 KPa and temperature of $20^{\circ} \mathrm{C}$. Find (i) the mole fraction of each constituent,
(ii) the equivalent molecular weight of the mixture,
(iii) the equivalent gas constant of the mixture,
(iv) the partial pressures and partial volumes,
(v) the volume and density of mixture, and
(vi) the Cp and Cv of the mixture. If the mixture is heated at constant volume to $40^{\circ} \mathrm{C}$, find the changes in internal energy, enthalpy and entropy of the mixture. If heating is done at constant pressure, calculate the changes in internal energy, enthalpy and entropy of the mixture. Take γ for CO_{2} and N_{2} to be 1.286 and 1.4 respectively.
b) State van-der-Waals equation of state?

Or
10 a) Explain about adiabatic mixing of perfect gases.
b) State Dalton's law of partial pressures and Avogadro's laws of additive volumes.

II B. Tech I Semester Regular Examinations, March - 2021 THERMODYNAMICS

(Com to ME, AME)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) What is a system? Explain different types of systems with example.
b) Explain the zeroth law of thermodynamics with neat sketch. Explain how it is important in establishing the temperature scale?

Or

2 a) Explain the working of constant volume gas thermometer.
b) A three process cycle operating with nitrogen as the working substance has constant temperature compression at $34^{\circ} \mathrm{C}$ with initial pressure 100 kPa . Then the gas undergoes a constant volume heating and then polytropic expansion with 1.35 as index of expansion. The isothermal compression requires $-67 \mathrm{~kJ} / \mathrm{kg}$ of work. Determine
i) pressure, volume and temperature around the cycle
ii) Heat in and out
iii) Net work For Nitrogen gas $\mathrm{CX}=0.7431 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

3 a) Explain Joule's experiment?
b) Derive the steady flow energy equation and apply it to a Heat exchanger?

Or
4 a) At the inlet to a certain nozzle the enthalpy of fluid passing is $2800 \mathrm{~kJ} / \mathrm{kg}$ and velocity is $50 \mathrm{~m} / \mathrm{s}$. At the discharge end the enthalpy is $2600 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it.(10m)
(i) Find the velocity at exit of the nozzle.
(ii) If the inlet area is $900 \mathrm{~cm}^{2}$ and specific volume at inlet is 0.187
$\mathrm{m}^{3} / \mathrm{kg}$ find mass flow rate.
(iii) If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$, find the exit area of the nozzle.
b) Write the corollaries of first law of thermodynamics?

5 a) Establish the equivalence of Kelvin- Planck and Clausius statements.
b) Discuss about Carnot theorem with neat diagram.

Or
6 a) Prove that entropy is a property of a system.
b) 1 kg of air initially at 8 bar pressure and 380 K expands polytropically (pv1.2 $=$ constant) until the pressure is reduced to one -fifth value. Calculate:
(i) Final specific volume and temperature.
(ii) Change of entropy, work done and heat interaction.
(iii) Change in entropy.

1 of 2

7 a) Sketch the H-S and P-T diagram of a pure substance.
b) Describe with a neat sketch, separating throttling calorimeter for measuring the degree fraction of steam.

Or

8 a) A large, insulated vessel is divided into two chambers one containing 5 kg of dry saturated steam at 0.2 MPa and the other 10 kg of steam, 0.8 quality at 0.5 MPa . If the partition between the chambers is removed and the steam is mixed thoroughly and allowed to settle, find the final pressure, steam quality and entropy change in the process.
b) Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property lines.
9 a) A gaseous mixture consists of 1 kg of oxygen and 2 kg of nitrogen at a pressure of 150 kPa and a temperature of $20^{\circ} \mathrm{C}$. Determine the changes in internal energy, enthalpy and entropy of the mixture when the mixture is heated to a temperature of $100^{\circ} \mathrm{C}$ (i) at constant volume and (ii) at constant pressure..
b) Define the following
(i) Thermodynamic wet bulb temperature
(ii) Specific humidity
(iii)Saturated air

Or

10 a) State and prove Avogadro's law of additive volumes..
b) Atmosphere air at 1.0132 bar has a dbt of $32^{\circ} \mathrm{C}$ and wbt of $26^{\circ} \mathrm{C}$, compute i) the partial pressure of water vapour, ii) specific humidity, iii) dew point temperature, iv) relative humidity, v) degree of saturation, vi)density of air in the mixture, vii) density of vapour in the mixture, vii) enthalpy of the mixture.

SET-4

II B. Tech I Semester Regular Examinations, March - 2021 THERMODYNAMICS

(Com to ME, AME)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) Explain quasi - static process? What is its characteristic feature?
b) Which property of a system increases when heat is transferred.
i). at constant volume,
ii). at constant pressure.

Or

2 a) A mass of 1.5 kg of air is compressed in a quasi-static process from 0.1 MPa to 0.7 MPa for which $\mathrm{pv}=$ constant. The initial density of air is $1.16 \mathrm{~kg} / \mathrm{m}^{3}$. Find the work done by the piston to compress the air.
b) Show that work is a path function and not a property

3 a) Define internal energy. How is energy stored in molecules and atoms?
b) A gas of mass 1.5 kg undergoes a quasi-static expansion which follows a relationship $\mathrm{p}=\mathrm{a}+\mathrm{bV}$, where a and b are constants. The initial and final pressures are 1000 kPa and 200 kPa respectively and the corresponding volumes are $0.20 \mathrm{~m}^{3}$ and $1.20 \mathrm{~m}^{3}$. The specific internal energy of the gas is given by the relation: $u=1.5 \mathrm{pv}-85 \mathrm{~kJ} / \mathrm{kg}$. Where P is the kPa and V is in $\mathrm{m}^{3} / \mathrm{kg}$. Calculate the net heat transfer and the maximum internal energy of the gas attained during expansion.

Or
4 a) Distinguish between reversible process and cyclic process. Write the causes of irreversibility?
b) Derive the steady flow energy equation and apply in to steam nozzle and turbine.

5 a) A reversible heat engine operates between two reservoirs at temperatures of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of $40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. The heat transfer to the engine is 2000 kJ and the net work output of the combined engine-refrigerator plant is 360 kJ .
(i) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$.
(ii) Reconsider (i) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible value.
b) Explain about heat engine and heat pump

Or
6 a) What is the absolute thermodynamic temperature scale? Show that a definite point exists on the absolute temperature scale but that this point cannot be reached without the violation of the second law.
b) Write the Maxwell's equations and derive the first and second Tds equations.

7 a) Why cannot a throttling calorimeter measure the quality if the steam is very wet?
How is the quality measured then?
b) A steam boiler initially contains $5 \mathrm{~m}^{3}$ of steam and $5 \mathrm{~m}^{3}$ of water at 1 MPa . Steam is taken out at constant pressure until $4 \mathrm{~m}^{3}$ of water is left. What is the heat transferred during the process?

> Or

8 a) Describe with a neat sketch, separating throttling calorimeter for measuring the degree fraction of steam?
b) Explain the properties during phase-change?

9 a) Define Compressibility factor ' Z '. Discuss the significance of the compressibility factor.
b) Explain Beattie - Bridgeman equation of state?

Or
10 a) Derive the expressions for the internal energy and specific heats for mixtures of ideal gases.
b) Explain Psychometric properties of atmospheric air.

SET - 1

I B. Tech II Semester Regular Examinations, September- 2021 THERMODYNAMICS (Only ME)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I
1 a) What is a thermodynamic system? Explain different classes of systems with suitable examples.
b) A balloon is filled with air (200 kPa and 300 K) such that it becomes as sphere of diameter 1 m . It is then gradually heated till the pressure rises to 500 kPa .
Determine the amount of work done during the process, assuming that the pressure inside the balloon is proportional to the diameter of the balloon.

Or
2 a) Discuss exact and inexact differentials.
b) Explain what do you understand by concept of continuum? How will you define density and pressure using this concept?

UNIT-II

3 a) State the first law of thermodynamics and prove that for a non-flow process, it leads to the energy equation.
b) Explain joule's Experiment.

Or
4 a) Define internal energy and prove that it is a property of the system.
b) A system executes a cyclic process during which there are four transfers of heat as given as follows: $\mathrm{Q}_{12}=880 \mathrm{~kJ} ; \mathrm{Q}_{23}=100 \mathrm{~kJ} ; \mathrm{Q}_{34}=-720 \mathrm{~kJ} ; \mathrm{Q}_{41}=200 \mathrm{~kJ}$. The work transfers during the processes are given as: $\mathrm{W}_{12}=60 \mathrm{~kJ} ; \mathrm{W}_{23}=-40 \mathrm{~kJ} ; \mathrm{W}_{34}=$ 80 kJ . Find W_{41}.

UNIT-III

5 a) Given an expression for entropy changes for an open system.
b) An ice plant working on a reversed Carnot cycle heat pump produces 15 ton of ice per day. The ice is formed from water at $0^{0} \mathrm{C}$ and the formed ice is maintained at $0^{\circ} \mathrm{C}$. The heat is rejected to the atmosphere at $25^{\circ} \mathrm{C}$. The heat pump used to run the ice plant is coupled to a Carnot engine which absorbs heat from a source which is maintained at $220^{\circ} \mathrm{C}$ by burning liquid fuel of $44500 \mathrm{~kJ} / \mathrm{kg}$ calorific value and rejects the heat to the atmosphere. Determine: (i) Power consumed by the engine. (ii) Fuel consumed per hour. Take enthalpy of fusion of ice $=334.5 \mathrm{~kJ} / \mathrm{kg}$.

Or
6 a) Two blocks of metal, each having a mass of 10 kg and having a specific heat of $0.4 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, are at a temperature of $40^{\circ} \mathrm{C}$. A reversible refrigerator receives heat from one block and rejects heat to the other. Calculate the work required to cause a temperature difference of $100^{\circ} \mathrm{C}$ between the two blocks.
b) Define Kelvin -Planck and Clausius statements. Prove that violation one Statement leads to a violation of the other Statement.

SET - 1

UNIT-IV

7 a) Write the clapeyron equation and point out its utility.
b) Steam initially at $0.3 \mathrm{MPa}, 250^{\circ} \mathrm{C}$ is cooled at constant volume.
i) At what temperature will steam become superheated vapour?
ii) What is the quality of steam at $80^{\circ} \mathrm{C}$?
iii) What is the heat transferred per kg of steam in cooling from $250^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$.

Or
8 a) In a separating and throttling calorimeter the pressure of the steam before throttling is 10bar. The pressure and temperature of steam after throttling is 1.1 bar and $110^{\circ} \mathrm{C}$ respectively. At the separator 0.6 kgs of water is trapped and 3.4 kgs of condensed water is collected from the condenser. Determine the dryness fraction of steam in the main pipeline. Take Cp for superheated steam as $2.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}$.
b) Discuss about triple point, critical temperature and critical pressure.

UNIT-V

9 a) Define the terms Specific humidity, Relative humidity and Degree of saturation Draw the same on Psychometric chart.
b) Methane has a specific heat at constant pressure given by $\mathrm{Cp}=17.66+0.06188 \mathrm{~T}$ $\mathrm{kJ} / \mathrm{kg}$ mol K when 1 kg of methane is heated at constant volume from $27^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. If the initial pressure of the gas is 1 atm , calculate the final pressure, the heat transfer, the work done and the change in entropy.

Or
10 a) State and explain the importance of internal energy and enthalpy of gas mixtures.
b) A sling psychrometer reads $39^{\circ} \mathrm{C}$ dry bulb Temperature and $35^{\circ} \mathrm{C}$ wet bulb Temperature. Find the humidity ratio, Relative humidity, dew point Temperature, specific volume, and enthalpy of air.

II B. Tech I Semester Supplementary Examinations, September - 2021 THERMODYNAMICS

(Com to ME, AME)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks

1 a) Define the following terms: i) Thermodynamics ii) Macroscopic approach iii)Continuum.
b) A gas initially at 100 KPa and $6000 \mathrm{~cm}^{3}$. The final volume is $2000 \mathrm{~cm}^{3}$. Determine the moving boundary work for each of the following processes.
(i) P is inversely proportional to V (ii) $\mathrm{PV}^{2}=$ constant \quad iii) P is inversely proportional to V .

Or

2 a) Classify the types of systems; explain with examples.
b) A fluid at a pressure of 3 bar and with specific volume of $0.18 \mathrm{~m} / \mathrm{kg}$ contained in a cylinder behind a pistonexpands reversibly to a pressure of 0.6 bar according to a law, $\mathrm{p}=\mathrm{c} / \mathrm{v}^{3}$ where c is a constant. Calculate the work done by the fluid on the piston.
3
a) Define enthalpy. How is it related to internal energy?
b) Calculate the power developed and diameter of the inlet pipe, if a gas enters thegas turbine at $5 \mathrm{~kg} / \mathrm{sec}$, $50 \mathrm{~m} / \mathrm{s}$ with an enthalpy of $0.9 \mathrm{MJ} / \mathrm{kg}$. The heat loss to thesurrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. The heat loss to the surrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. The heat loss to the surrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. Assume 100 kPa and 300 K at the inlet.

Or
4 a) Describe the classic paddle wheel experiment performed by Joule. What conclusion was drawn based on the experimental observations (Joule experiment).
b) Calculate the power developed and diameter of the inlet pipe, if a gas enters into thegas turbine at $5 \mathrm{~kg} / \mathrm{sec}, 50 \mathrm{~m} / \mathrm{s}$ with an enthalpy of $0.9 \mathrm{MJ} / \mathrm{kg}$. The heat loss to thesurrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. The heat loss to the surrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. Theheat loss to the surrounding is $0.025 \mathrm{MJ} / \mathrm{kg}$. Assume 100 kPa and 300 K at the inlet.
5 a) Explain the Availability in a thermodynamic system with example.
b) A heat engine working on Carnot cycle converts $1 / 5$ th of the heatinput into work. When the temperature of the sink is reduced by $80^{\circ} \mathrm{C}$, the efficiency gets doubled. Determine the temperature of sink?

Or

6 a) Define Gibb's and Helmholtz's functions? Compare the importance of them?
b) A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$, theambient air temperature is $30^{\circ} \mathrm{C}$, if heat leaks into the freezer at the continuous rate of $1.75 \mathrm{~kJ} / \mathrm{sec}$. State the least power necessary topump this heat out continuous?

7 a) Why can not a throttling calorimeter measure the quality, if the steam is wet? Explain how the quality is been measured?
b) 1 kg of water fills a 150 L rigid container at an initial pressure of 2 MPa . The container is then cooled to $40^{\circ} \mathrm{C}$. Determine the initial temperature and final pressure of the water.

Or
8 a) Explain the saturation temperature, the changes in specific volume, enthalpy and entropy during evaporation at 1 MPa .
b) A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated waterand steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquidpresent is 9 kg . Find the pressure, mass, specific volume, enthalpy, entropy.
9 a) Explain the Mole fraction and Mass fraction in the Mixture of Perfect gas? Derive a relation between them.
b) Saturated air at $210^{\circ} \mathrm{C}$ is passed through a dryer, so that its final relative humidity is 20%. The dryer uses silica gel absorbent. The air is then pass through a cooler until its final temperature is $210^{\circ} \mathrm{C}$ without a change in specific humidity. Find out i) the temperatureof air at the end of the drying process, ii) the relative humidity atthe end of the cooling process, iii)The dew point temperature at the end of the drying process?

Or
10 a) Air at 10 bar and a DBT of $400^{\circ} \mathrm{C}$ and WBT of $360^{\circ} \mathrm{C}$. Compute degree of saturation, dew point temperature and enthalpy of the mixture?
b) Enumerate different psychometric processes.

